PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2011 | 14 | 3 |

Tytuł artykułu

Effect of media composition on laccase production by Pleurotus ostreatus in batch culture

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN

Wydawca

-

Rocznik

Tom

14

Numer

3

Opis fizyczny

http://www.ejpau.media.pl/volume14/issue3/art-03.html

Twórcy

autor
  • Biochemistry Department, National Research Centre, Egypt
autor

Bibliografia

  • 1. Arora D.S., Gill P.K., (2001). Effects of various media and supplements a laccase production by some white rot fungi. Bioresource Technology. 77: 89-91.
  • 2. Bourbonnais R., Paice M.G., (1990). Oxidation of non-phenolic substrates. An expanded role for laccase in lignin biodegradation. FEBS Lett. 267: 99-102.
  • 3. Burla G., Garzillo A.M., Cardelli L.E., Schiesser A., (1992). Effect of different growth conditions on enzyme production by Pleurotus ostreatus in submerged culture. Bioresource Technology, 42: 89-94.
  • 4. Buswell J.A., Cai Y., Chang S., (1995). Effect of nutrient nitrogen and manganese on manganese peroxidase and laccase production by Lentinula (Lentinus) edodes. FEMS Microbiol. Lett. 128: 81-88.
  • 5. Collins P.J., Dobson A.D.W., (1997). Regulation of laccase gene transcription in Trametes versicolor. Appl. Environ. Microbiol. 63: 3444-3450.
  • 6. Couto S.R., Herrera J.L.T., (2006). Industrial and biotechnological applications of laccases: A review. Biotechnology Advances, 24: 500–513
  • 7. Dekker R.F.H., Vasconeelos A.F.D., Giese E.C., Paccola-Meirelles L., (2001). A new role for veratryl alcohol: regulation of synthesis of lignocellulose-degrading enzymes in the ligninolytic ascomyceteous fungus, Botryosphaeria sp.; influence of carbon source. Biotechnol. Lett. 23: 1987-1993.
  • 8. Dhanda S., Sodhi H.S., Phutela R.P., (1996). Nutrition and yield evaluation of oyster mushroom Pleurotus ostreatus. India. J. Nutriti. Diete. 33: 275-279.
  • 9. Dundar A., Acay, H., Yildiz A. , (2009). Effect of using different lignocellulosic wastes for cultivation of Pleurotus ostreatus (Jacq.) P. Kumm. On mushroom yield, chemical composition and nutritional value. Afr. J. Biotechnol. 8: 662-666.
  • 10. Elisashvili V., Parlar H., Kachlishvili E., Chichua D., Bakradze M., Kokhreidze N., (2001). Ligninolytic activity of basidiomycetes grown under submerged and solid state fermentation on plant raw material (sawdust of grapevine cuttings). Adv. Food Sci. 23: 117-123.
  • 11. Elisashvili V., Kachlishvili E., Tsiklauri N., Khardziani T., Bakradze M., (2002). Physiological regulation of edible and medicinal higher basidomycetes lignocellulolytic enzymes activity. Int. J. Med. Mushr. 4: 159-166.
  • 12. Erika W., Ulla M., Aila M., Matti L., Annele H., (2008). Production of lignin modifying enzymes on industrial waste material by solid-state cultivation of fungi. Biochem. Eng. J. 42: 128–132.
  • 13. .Eriksson K.E.L., (1990) Biotechnology in the pulp and paper industry. Wood Sci. 29: 79-101.
  • 14. Fenice M., Giovannozzi-Sermanni G., Federici F., D'Annibale A., (2003). Submerged and solid-state production of laccase and Mn-peroxidase by Panus tigrinus on olive mill wastewater-based media. J. Biotechnol. 100: 77-85.
  • 15. Galhaup, C., Wangner, H., Hinterstoisser, B., Haltrich D., (2002). Increased production of laccase by wood-degrading basidiomycete Trametes pubescens. Enzyme . Microbiol. Technol. 30: 529-536.
  • 16. Geiger J.P., Rio B., Nandris D., Nicola M., (1986). Laccases of Rigidoporus lignosus and Phellinus noxius.I. Purification and some physico-chemical properties. Appl. Biochem. Biotechnol. 12: 121-133.
  • 17. Gianfreda L., Xu F., Bollag J.M., (1999). Laccases: a useful group of oxidoreductive enzymes. Bioremed. J. 3: 1-25.
  • 18. Gursharan S., Neena C., Rashmi G., Prince S. , (2007). A pH-stable laccase from alkali-tolerant -proteobacterium JB: Purification, characterization and indigo carmine degradation. Enzyme Microb. Technol. 41:794–799.
  • 19. Hatakka A., (1994). Lignin-modifying enzymes from selected white rot fungi production and role in lignin degradation. FEMS Microbiol. Rev. 13: 125-135.
  • 20. Hatvani N., Mees I., (2002). Effect of the nutrient composition on dye decolorisation and extracellular enzyme production by Lentinus edodes on solid medium. Enzyme Microb. Technol. 30: 381-386.
  • 21. Jianbo Z., Xiaopeng L., Zhenqiang X., Hui C., Yuxiang Y., (2008). Degradation of chlorophenols catalyzed by laccase. Internal. Biodeterior. Biodegrad. 61:351-356.
  • 22. Johansson M., Denekamp M., Asiegbu F.O., (1999). Production and isozyme pattern of extracellular laccase in the S and P intersterility groups of the root pathogen Heterobasidion annosum. Mycol. Res. 103: 365-371.
  • 23. Kaal J.E.E., Field A.J., Joyce W.T., (1995). Increasing ligninolytic enzyme activities in several white rot basidiomycetes by nitrogen-sufficient media. Bioresource Technology, 53: 133-139.
  • 24. Leonowicz A., Edgehill R.V., Bollag J.M., (1984a).The effect of pH on the transformation of syringic acid and vanillic acid by laccase of Rhizoctonia praticola and Trametes versicolor. Arch. Microbiol. 137: 89-96.
  • 25. Leonowicz A., Edgehill R.V., Bollag J.M., (1984b). Degradation mechanisms of phenolic ß-1 lignin substructure model compounds by laccase of Coriolus versicolor. Arch. Biochem. Biophys. 262: 991-1010.
  • 26. Li X., Pang Y., Zhang R., (2001). Compositional change of cottonseed hull substrate during Pleurotus ostreatus growth and the effects on the feeding value of the spent substrate. Bioresource Technology, 80: 157-161.
  • 27. Lihua L. Zhiwei L., Teng Z., Ling L., Chuanqi Z., Zhanxi L., Shihua W., Zonghua W., (2009). Fermentation optimization and characterization of the laccase from Pleurotus ostreatus strain 10969. Enzyme Microb. Technol. 44: 426–433.
  • 28. Lorenzo M., Moldes, D., Couto R.S., Sanroman A., (2002). Improving laccase production by employing different lignocellulosic wastes in submerged cultures of Trametes versicolor. Bioresource Technology, 82: 109-113.
  • 29. Lowry O.H., Rosebrough N.J., Farr A.F., Randall R.J., (1951). Protein measurement with the folin phenol reagent. J. Biol. Chem. 193: 265-275
  • 30. Madhavi S., Revankar S., Lele S., (2006). Enhanced production of laccase using a new isolate of white rot fungus WR-1. Process Bioch. 41: 581–588.
  • 31. Maj A., Witkowska D., Robak M., 2002. Biosynthesis and properties of beta 1,3 glucanases of Trichoderma hamatum, EJPAU, Biotechnology, 5(2): 1–8
  • 32. Mansur M., Suarez T., Fernandez-Larra J.B., Brizuela M.A., Gonzalez A.D., (1997). Identification of laccase gene family in the new lignin-degrading basidiomycetes CECT 20197. Appl. Environ. Microbiol. 63: 2637-2646.
  • 33. Marques De-Souza C.G., Zilly A., Peralta R.M., (2002). Production of laccase as the sole phenoloxidase by a Brazilian strain of Pleurotus plumonarius in solid state fermentation. J. Basic. Microbiol. 42: 83-90.
  • 34. Matrosova E.V., Mazheika I.S., Kudriavtseva O.A., Kamzolkina O.V., (2009). Morphogenesis and ultrastructure of basidiomycetes Agaricus and Pleurotus mitochondria. Tsitologiia. 51:490-499.
  • 35. Mayolo-Deloisa K., del Refugio Trejo-Hernandez M., Rito-Palomares M., (2009). Recovery of laccase from the residual compost of Agaricus bisporus in aqueous two-phase systems. Process Biochemistry , 44: 435–439.
  • 36. Medeiors M.B., Bento A.V., Nunes A.L.L., Oliveria S.C., (1999) Optimization of some variables that affect the synthesis of laccase by Pleurotus ostreatus. Bioprocess. Eng. 21: 483-487.
  • 37. Membrillo I., Sanchez C., Meneses M., F awella E., Loera O., (2008). Effect of substrate particle size and additional nitrogen source on production of lignocellulolytic enzymes by Pleurotus ostreatus strains. Bioresource Technology, 99:7842–7847.
  • 38. Mirjana S., Limor P., Dana F., Yitzhak H., Solomon P. W., Eviatar N., Jelena V., (2006). Effect of different carbon and nitrogen sources on laccase and peroxidases production by selected Pleurotus species. Enzyme Microb. Technol. 38: 65–73.
  • 39. Morais H., Ramos A.C., Cserhati T., Forgacs E., Darwish Y. , Illes Z., (2001). Effect of the composition of culture media on the laccase production of Lentinus edodes strains.Acta Biotechnol. 21: 307-320.
  • 40. Munoz C., Guillen F., Martinez A.T., Martinez M.J., (1997). Laccase isoenzymes of Pleurotus eryngii: characterization, catalytic properties and participation inactivation of molecular oxygen and Mn2+ oxidation. Appl. Environ. Microbiol. 63: 2166-2174.
  • 41. Naguib M.I., (1964). Effect of sevin on the carbohydrate and nitrogen metabolism during the germination of cotton seeds. Ind. J. Exp. Biol. 2: 149-152.
  • 42. Nemec S., Phelps D., Baker R., (1989). Effects of dihydrofusarubin and isomarticin from Fusarium solani on carbohydrate status and metabolism of rough lemon seedlings. Physiol. Biochem. 79: 700-705.
  • 43. Niku-Paavola M.L., Karhunen E., Salola P., Raunio V., (1988). Ligninolytic enzymes of the white-rot fungus Phlebia radiate. Biochem. J. 254: 877-884.
  • 44. Osherov N., May G.S., (1998). Optimization of protein extraction from Aspergillus nidulans for gel electrophoresis. Fung. Genet. Newsletter 45: 38-40.
  • 45. Palmieri G., Giardina P., Bianco C., Fontanella B., Sannia G., (2002). Copper induction of laccase isoenzymes in the ligninolytic fungus Pleurotus ostreatus. Appl. Environ. Microbiol. 66: 920-924.
  • 46. Papinutti V.L., Diorio L.A., Forchiassin F., (2003). Production of laccase and manganese peroxidase by Fomes sclerodermeus grown on wheat bran. J. Ind. Microbiol. Biotechnol. 30:157-160.
  • 47. Pelaez F., Martinez M.J., Martinez A.T., (1995). Screening of 68 species of basidiomycetes for enzymes involved in lignin degradation. Mycol. Res. 99: 37-42.
  • 48. Periasamy K., Natarajan K., (2004). Role of lignocellulosic enzymes during basidiomata production by Pleurotus djamor var. reseus . Indian J. Biotechnology , 3: 577-583
  • 49. Pickard M.A., Vandertol H., Roman R., Vazquez-Duhalt R., (1999). High production of ligninolytic enzymes from white-rot fungi in cereal bran liquid medium. Can. J. Microbiol. 45: 627-631.
  • 50. Pointing S.B., Jones E.B.G., Virjmoed L.L.P., (2000). Optimization of laccase production by Pycnoporus sanguineus in submerged liquid culture. Mycologia 92: 139-144.
  • 51. Prasad K.K, Mohan S.V., Bhaskar Y.V., Ramanaiah S. V., Babu V. L., Pati B.R. , Sarma P. N., (2005). Laccase production using Pleurotus ostreatus 1804 immobilized on PUF cubes in batch and packed bed reactors: influence of culture conditions. J. Microbiol. 43 (3): 301-307.
  • 52. Prasad K.K., Mohan S.V., Rao R.S., Pati B.R., Sarma P.N., (2005). Laccase production by Pleurotus ostreatus 1804: optimization of submerged culture conditions by Taguchi DOE methodology. Biochem. Eng. J. 24: 17-26.
  • 53. Pumelli F., Reverberi M., Porretta D., Nogarotto S., Fabrii A.A., F anelli C., Urbanelli S., (2009). Molecular characterization and enzymatic activity of laccases in two Pleurotus spp. with different pathogenic behaviour. Mycological Research, 1: 381–387.
  • 54. Rodriguez C.S., Gundin M., Lorenzo M., Sanroman M.A., (2002). Screening of supports and inducers for laccase production by Trametes versicolor in semi-solid state conditions. Proc. Biochem. 38: 249-255.
  • 55. Santos-Rocha T.A.P., Diniz M.S., Castro L., Peres I., Duarte A.C., (2009). Biological treatment of the effluent from a bleached kraft pulp mill using basidiomycete and zygomycete fungi. Sci. Total Environ. 407: 3282–3289.
  • 56. Sastre-Ahuatzi M., Téllez-Téllez M., Díaz-Godínez G., Montiel-González A.M., Díaz R., Sánchez C., (2007). Mycelial growth of strains of Pleurotus ostreatus developed on agar and its correlation with the productivity in pilot production farm. Braz. J. Microbiol. 38: 568-572.
  • 57. Saul T.B., Carmen S.A.N., Octavio L., Geoffrey D. R., Gerardo D.G., (2008). Laccases of Pleurotus ostreatus observed at different phases of its growth in submerged fermentation: production of a novel laccase isoform. Mycol. Res. 112: 1080–1084.
  • 58. Score A.J., Plafreyman J.W., White N.J., (1997). Extracellular phenoloxidase and enzyme production during interspecific fungal interactions.Int. Biodeterior. Biodegrad. 39: 225-233.
  • 59. Shuttleworth K.L., Bollag J.M., (1986). Soluble and immobilized laccase as catalysts for the transformation of substituted phenols. Enzyme Microb. Technol. 8: 171-177.
  • 60. Sik S., Ünyayar A., (1998). Phanerochaete chrysosporium and Funalia trogii for the degradation of cotton stalk and their laccase, peroxidase, ligninase and cellulose enzyme activities under semi-solid state conditions. Turk. J. Biol. 22: 287-298.
  • 61. Srinivasan N., ď Sousa T.M., Boominathan K., Reddy C.A. , (1995). Demonstration of laccase in the white rot basidiomycetes Phanerochaete chrysosporium BK-F1767. Appl. Environ. Microbiol. 61: 4274-4277.
  • 62. Stajić M., Persky L., Friesem D., Hader Y., Wasser S.P., Nevo E., Vukojević J., (2005). Effect of different carbon and nitrogen sources on laccase and peroxidases production by selected Pleurotus sp. Enzyme Microb.. Technol. 38: 65-73.
  • 63. Sun X., Zhang R., Zhang Y., (2004). Production of Lignocellulolytic enzymes by Trametes gallica and detection of polysaccharide hydrolase and laccase activities in polyacrylamide gels. J. Basic. Microbiol. 44: 220-231.
  • 64. Szklarz G.D., Antibute R.K., Sinsabauge R.L., Linkins A.E., (1989). Production of phenol oxidases and peroxidases by wood-rotting fungi. Mycologia 81: 234-240
  • 65. Tasnim K., Zafer S.I., (1999). Improvement in the nutritive value of rice straw by biodegradation with Pleurotus spp. Pakistan J. Sci. Indu. Res. 42: 360-363.
  • 66. Thiyagarajan A., Kaviyarasan V., Karrunakaran C.M., (2010). Optimization of process parameters for the production of thermostable laccase by Pleurotus flabellatus ATK-1 using Response Surface Methodology. International Journal of Current Research, 7: 058-061
  • 67. Thurston C.F., (1994). The structure and function of fungal laccases. Microbiol. 140: 19-26.
  • 68. Ullah M.A., Kadhim H., Rastall R.A., Evans C.S. ,(2000). Evaluation of solid substrates for enzyme production by Coriolus versicolor, for use in bioremediation of chlorophenols in aqueous effluents.Appl. Microbiol. Biotechnol. 54: 832-837.
  • 69. Vasconeelos A.F.D., Barbosa A.M., Dekker R.F.H., Scarminio I.S., Rezende M.I., (2000). Optimization of laccase production by Botryosphaeria sp. in the presence of veratryl alcohol by the response-surface method. Proc. Biochem. 35: 1131-1138.
  • 70. Vendula V., Petr B., (2006). Estimation of bound and free fractions of lignocellulose-degrading enzymes of wood-rotting fungi Pleurotus ostreatus, Trametes versicolor and Piptoporus betulinus. Res. in Microbiol. 157:119–124.
  • 71. Vikineswary S., Abdullah N., Renuvathani M., Sekaran M., Pandey, A., Jones E.B.G., (2006). Productivity of laccase in solid substrate fermentation of selected agro-residues by Pycnoporus sanguineus. Bioresource Technology. 97:171–177.
  • 72. Yakup K., Ahmet C., Ertug S., Melike Y., Nagihan S., (2007). Comparative characterization of monophenolase and diphenolase activities from a wild edible mushroom. Food Chemistry, 101: 778-785.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-66fc4465-364d-4714-a467-f98ad0ddb086
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.