PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Czasopismo

2010 | 55 | 08 |

Tytuł artykułu

Biodegradowalne i jadalne opakowania do żywności z polimerów naturalnych

Warianty tytułu

EN
Biodegradable and edible food packaging from natural polymers

Języki publikacji

PL

Abstrakty

PL
Artykuł jest przeglądem literatury, dotyczącym wykorzystania polimerów naturalnych do wytwarzania jadalnych powłok powierzchniowych lub opakowań do żywności. Omówione zostały właściwości folii z różnych białek i polisacharydów oraz sposoby poprawy ich właściwości użytkowych poprzez modyfikacje fizyczne, chemiczne i enzymatyczne. Przedstawiono również możliwości włączania w matrycę polimerową nanonapełniaczy i scharakteryzowano właściwości otrzymanych nanokompozytów polimerowych. Ponadto wskazano możliwości poszerzenia właściwości użytkowych folii z naturalnych polimerów poprzez wprowadzenie dodatkowych substancji, przede wszystkim o aktywności przeciwdrobnoustrojowej.
EN
A review of literature concerning the use of natural polymers for the production of surface edible coatings or food packaging is presented. The properties of films made from various proteins and polysaccharides and ways to enhance their useful properties through physical, chemical and enzymatic modifications are discussed. The possibilities to include nano fillers into the polymer matrix are also presented and properties of obtained nano composites are characterised. Moreover, the possibilities of the enlargement of the natural film useful properties through the introduction of additional substances first of all with antimicrobial activity are indicated.

Słowa kluczowe

Wydawca

-

Czasopismo

Rocznik

Tom

55

Numer

08

Opis fizyczny

s.26,28,30,32,34,36,bibliogr.

Twórcy

autor
  • Katedra Chemii, Technologii i Biotechnologii Żywności, Wydział Chemiczny, Politechnika Gdańska, Gdańsk
autor
  • Katedra Chemii, Technologii i Biotechnologii Żywności, Wydział Chemiczny, Politechnika Gdańska, Gdańsk
  • Katedra Chemii, Technologii i Biotechnologii Żywności, Wydział Chemiczny, Politechnika Gdańska, Gdańsk
  • Katedra Chemii, Technologii i Biotechnologii Żywności, Wydział Chemiczny, Politechnika Gdańska, Gdańsk

Bibliografia

  • [1] Anonim. 2008. Tends in global packaging, www.worldpackaging.org.
  • [2] Averous L, Boquillon N. 2004. Blocomposltes based on plasticized starch: thermal and mechanical behaviours. Carbohydrate Polymers, 56, 111-122.
  • [3] Leszczyński W. 2001. Materiały opakowaniowe z polimerów biodegradowalnych. Przemysł Spożywczy, 8, 81-84.
  • [4] Matzinos P., Tserki V., Kontoyiannis, Panayiotou C. 2002. Processing and chracterization of starch/polycaprolactone products. Polymer Degradation and Stability, 77, 17-24.
  • [5] Suyatma N.E., Coplnet A., Tlghzart L, Coma V. 2004. Mechanical and barrier properties of biodegradable films made from chitosan and poly(lactic acid) blends. Journal of Polymers and the Environment, 12, 1-6.
  • [6] Sadowska M. 1992. Kolagen mięsa - budowa, oznaczanie i właściwości funkcjonalne. Rozprawa habilitacyjna. Politechnika Gdańska, Gdańsk.
  • [7] Krochta J. M., De Mulder-Johnston C. 1997. Edible and biodegradable polymer films: challenges and oppportunities. Food Technologies, 51,2, 61-74.
  • [8] Janicki S., Fiebig A., Szmitowska M. 2003. Farmakologia Stosowana. Wydawnictwo Lekarskie PZWL, Warszawa.
  • [9] Gómez-Gullién M.C., Turnay J., Fernández-Díaz M.D., Ulmo N., Lizarbe M.A., Montero P. 2002. Structural and physical properties of gelatin extracted from different marine species: A comparative study. Food Hydrocolloids, 16, 25-34.
  • [10] Jongjareonrak A., Benjakul S., Visessanguan W., Podpran T., Tanaka M. 2006a. Characterization of edible films from skin gelatin of brownstripe red snapper and bigeye snapper. Food Hydrocolloids, 20,492-501.
  • [11] Kołodziejska I., Skierka E., Sadowska M., Kołodziejski W., Nicikowska C. 2008. Effect of extracting time and temperature on yield of gelatin from different fish offal. Food Chemistry, 107, 700- 706.
  • [12] Haug I.J., Draget K.I., Smidsrød O. 2004. Physical and rheological properties of fish gelatin compared to mammalian gelatin. Food Hydrocolloids, 18, 203-213.
  • [13] Muyonga J.H., Cole C.G.B, Duodu K.G. 2004. Extraction and physic-chemical characterization of Nile perch (Lates niloticus) skin and bone gelatin. Food Hydrocolloids, 18, 581-592.
  • [14] Jongjareonrak A., Benjakul S., Visessanguan W., Tanaka M. 2006b. Effects of plasticizers on the properties of edible films from skin gelatin of bigeye snapper and brownstripe red snapper. European Food Research and Technology, 222, 229-235.
  • [15] Cao N., Fu Y., He J. 2007. Mechanical properties of gelatin films cross-linked, respectively, by ferulic acid and tannin acid. Food Hydrocolloids, 21, 575-584.
  • [16] Piotrowska B., Sztuka K., Kołodziejska I., Dobrosielska E. 2008. Influence of transglutaminase or 1-ethyl-3-(3-dlmethylaminopropyl) carboiimide (EDC) on the properties of fish-skin gelatine films. Food Hydrocolloids, 22, 1362-1371.
  • [17] Brandenburg A.H., Weller C.L., Testin R.F. 1993. Edible films and coatings from soy protein. Journal of Food Science, 58, 1086- 1089.
  • [18] Gennadios A., Weller C.L., Testin R.F. 1993. Temperature effect on oxygen permeability of edible protein-based films. Journal of Food Science, 58, 212-214.
  • [19] Tendaj M., Tendaj B. 2001. Białka sojowe jako składniki powłok jadalnych. Przemysł Spożywczy, 55(7), 20-21,31.
  • [20] Kim K.M., Weller C.L., Hanna M.A., Gennadios A. 2002. Heat curing of soy protein films at atmospheric and sub-atmospheric conditions. Journal of Food Science, 67, 708-713.
  • [21] Cho S. Y, Park J-W., Batt H.P., Thomas R.L. 2007. Edible films made from membrane processed soy protein concentrates. Lebensmittel-Wissenschaft und- Technologie, 40, 418-423.
  • [22] Cao Y.M., Chang K.C. 2001. Edible films prepared from water extract of soybeans. Journal of Food Science, 67, 1449-1454.
  • [23] Shepherd R., Reader S., Falshaw A. 1997 Chitosan functional properties. Glycoconjugate Journal, 14, 535-542.
  • [24] Begin A., Van Calsretren M.R. 1999. Antimicrobial films produced from chitosan. International Journal of Biological Macromolecules, 26, 63-67.
  • [25] Srinivasa P.C., Ramesh M.N., Tharanathan R.N. 2007. Effect of plasticizers and fatty acids on mechanical and permeability characteristics of chitosan films. Food Hydrocolloids, 21, 1113-1122.
  • [26] Piotrowska B., Kołodziejska I., Januszewska-Jóźwiak, K., Wojtasz-Pająk, A. 2005. Effect of transglutaminase on the solubility of chitosan-gelatin films. In: Advances in Chitin Science, vol. VIII, Struszczyk H., Domard A., Peter M.G., Pospieszny H. (Eds.), Institute of Plant Protection, Poznań, 71-78.
  • [27] Chen R.H., Hwa H.D., 1996. Effect of molecular weight of chitosan with the same degree of deacetylation on the thermal, mechanical and permeability properties of the prepared membrane. Carbohydrate Polymers, 29, 353-358.
  • [28] Chen H. 1995. Functional properties and applications of edible films made of milk proteins. Journal of Dairy Science, 78, 2563- 2568.
  • [29] Audic J.L., Chaufer B. 2005. Influence of plasticizers and crosslinking on the properties of biodegradable films made from sodium caseinate. European Polymer Journal, 41, 1934-1942.
  • [30] Pereda M., Aranguren M.I., Marcovich N.E. 2008. Characterization of chitosan/caseinate films. Journal of Applied Polymer Science, 107, 1080-1090.
  • [31] Schou M., Longares A., Montesinos-Herrero C., Monahan F.J., O'Riordan D., O'Sullivan M. 2005. Properties of edible sodium caseinate films and their application as food wrapping. Lebensmittel-Wissenschaft und-Technologie, 38, 605-610.
  • [32] Romero-Bastida C.A., Bello-Perez L, Garda M.A., Martno M.N., Solorza-Feria J., Noemi E. Zaritzky. 2005. Carbohydrate Polymers, 60, 235-244.
  • [33] Rejak A. 2007. Badanie właściwości fizycznych skrobiowych folii biodegradowalnych. Acta Agrophysica, 9(3), 747-754.
  • [34] Lourdin D., Della Valle G., Colonna P. 1995. Influence of amylose content on starch films and foams. Carbohydrate Polymers, 27, 261-270.
  • [35] Griffin G.L.G. 1977. Synthetic resin sweet material. US Patent 4021388.
  • [36] Mościcki L., Janssen L.P.B.M, Mitrus M. 2006. Przetwórstwo skrobi termoplastycznej na cele opakowaniowe. Inżynieria Rolnicza 6(81), 65-72.
  • [37] Sztuka K., Kołodziejska I. 2008. Jadalne folie oraz powłoki powierzchniowe z polimerów naturalnych stosowane do opakowań do żywności. Cz.I. Właściwości. Polimery, 53, 627-630.
  • [38] Quattara B., Canh L.T., Vachon C., Mateescu M.A., Lacroix M. 2002. Use of γ-irradiation cross-linking to improve the water wapour permeability and the chemical stability of milk protein films. Radiation Physics and Chemistry, 63, 821-825.
  • [39] Sabato S., Nakamurakara N., Sobral P. 2007. Mechanical and thermal properties of irradiated films based on Tilapia (Oreochromis niloticus) proteins. Radiation Physics and Chemistry, 76, 1862-1865.
  • [40] Braczko M., Tederko A., Grzybowski J. 1994. Określenie stopnia usieciowania błon kolagenowych przeznaczonych do celów medycznych metodą badania ich wodochłonności. Polimery w Medycynie, 24(3-4),41-52.
  • [41] Rhim J.W., Gennadios A., Fu D., Weller C.L., Hanna M.A. 1999. Properties of ultraviolet irradiated protein films. Lebensmittel- Wissenschaft und- Technologie, 32, 129-133.
  • [42] Kim J.K., Jo C., Park H.J., Byun M.W. 2008. Effect of gamma irradiation on the physicochemical properties of a starch-based film. Food Hydrocolloids, 22, 248-254.
  • [43] Yunoki, S.; Nagai, N.; Suzuki, T.; Munekata, M. 2004. Novel biomaterial from reinforced salmon collagen gel prepared by fibril formation and cross-linking. Journal of Bioscience and Bioengineering, 98, 40-47.
  • [44] Kołodziejska I., Piotrowska B., Bulge M., Tyllngo R. 2006. Effect of transglutaminase and 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide on the solubility of fish gelatin-chitosan films. Carbohydrate Polymers, 65, 404-409.
  • [45] Ghorpade V.M., Gennadios M.A., Hanna M.A., Weller C.L. 1995. Soy protein isolate/poly(ethylene oxide) films. Cereal Chemistry., 72, 559-563.
  • [46] Sheu M.T., Huang J.C., Yeh G.C., Ho H.O. 2001. Characterization of collagen gel solutions and collagen matrices for cell culture. Biomaterials, 22, 1713-1719.
  • [47] Carvalho R.A., Grosso C.R.F. 2004. Characterization of gelatin based films modified with transglutaminase, glyoxal and formaldehyde. Food Hydrocolloids, 18, 717-726.
  • [48] Ustunol Z. i Mert B. 2004. Water solubility, mechanical, barrier and thermal properties of cross-linked whey protein isolate-based films. Journal of Food Science, 69, 129-133.
  • [49] Lim L., Mine Y, Tung M.A. 1998. Transglutaminase cross-linked egg white protein films: tensile properties and oxygen permeability. 1998. Journal of Agricultural and Food Chemistry, 46, 4022- 4029.
  • [50] Yildirim M. i Hettiarachchy N.S. 1998. Properties of films produced by cross-linking whey proteins and 11S globulin using transglutaminase. Journal of Food Science, 63, 248-252.
  • [51] Tang C., Jiang Y, Wen Q., Yang X. 2005. Effect of transglutaminase treatment of the properties of cast films of soy protein isolates. Journal of Biotechnology, 120, 296-307.
  • [52] Chambi H., Grosso C. 2006. Edible films produced with gelatin and casein cross-linked with transglutaminase. Food Research International, 39, 458-466.
  • [53] Lai H.M., Chiang I.C. 2006. Properties of MTGase treated gluten film. European Food Research and Technology, 222, 291-297.
  • [54] Kołodziejska I., Piotrowska B. 2007. The water vapour permeability, mechanical properties and solubility offish gelatin-chitosan films modified with transglutaminase or 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide (EDC) and plasticized with glycerol. Food Chemistry, 103, 295-300.
  • [55] Malesa M. 2004. Nanonapełniacze kompozytów polimerowych. Część I. Krzemiany warstwowe. Elastomery, 3(8), 12-17.
  • [56] Ray S.S., Okamoto M. 2003. Polymer/layered silicate nanocomposites: a review from preparation to processing. Progress in Polymer Science, 28, 1539-1641.
  • [57] Martucci J.F., Vazquez A., Ruseckaite A. 2007. Nanocomposites based on gelatin and montmorillonite. Morphological and thermal studies. Journal of Thermal Analysis and Calorimetry, 89, 1, 117- 122.
  • [58] Rao Y. 2007. Gelatin-clay nanocomposites of improved properties. Polymer, 48, 5369-5375.
  • [59] Bae H.J., Park H.J., Hong S.I., Byun Y.J., Darby D.O., Kimmel R.M., Whiteside W.S. 2009. Effect of clay content, homogenization RPM, pH, and ultrasonication on mechanical and barrier properties of fish gelatin/montmorillonite nanocomposites films. LWT- Food Science and Technology, 42, 1179-1186.
  • [60] Dean K., Yu L. 2005. Biodegradable protein nanocomposites. In: Biodegradable Polymers for Industrial Application. Smith R. (Ed.), CRC Press, Boca Raton, p. 289-309.
  • [61] Rhim J.W., Lee J.H., Kwak H.S., 2005. Mechanical and water barrier properties of soy protein and clay mineral composite films. Food Science Biotechnology, 14, 112-116.
  • [62] Czaja N. 2004. Inteligentne opakowania. www.opakowania.com.pl/technologie/technologie.asp?ID=942
  • [63] Czerniawski B. 2003. Postęp w zakresie giętkich folii z tworzyw. http:// www.opakowania.com.pl/technologie/technologie.asp?id=601
  • [64] Malinowska-Pańczyk E., Sztuka K., Kołodziejska I. 2009. Przeciwdrobnousstrojowe, biodegradowalne folie opakowaniowe. Polimery, (na etapie recenzji).
  • [65] van Dam H. 2006. Organic acids and their salts. Pig Progress, 22(8), 26-28.
  • [66] Rabea E.I., Badawy M., Stevens C.V., Smagghe G., Steurbaut W. 2003. Chitosan as antimicrobial agent: applications and mode of action. Journal of the American Chemical Society, 4, 1457- 1465.
  • [67] Düring K. 1999. The non-enzymatic microbicidal activity of lysozymes. FEBS Letters, 449, 93-100.
  • [68] Appendini, P., Hotchkiss J.H., 2002, Review of antimicrobial food packaging,. Innovative Food Science and Emerging, 3, 113— 126.
  • [69] Padgett T, Han I, Dawson P. 1998. Incorporation of food-grade antimicrobial compounds into biodegradable packaging films. Journal of Food Protection 61, 1330-1335.
  • [70] Hoffman K.L., Dawson P.L., Acton J.C., Han I.Y., Ogale A.A. 1998. Film formation effects on nisin activity in corn zein and polyethylene films. Reserch and Development Activities for Military Food and Packaging Systems Report, 50, 238-244.
  • [71] Franklin N.B., Cooksey D.K., Getty K.J.K. 2001. Inhibition of Listeria monocytogenes Rusing nisin-containing packaging film. IFT Annual Meeting-New Orleans, Louisiana, 73D-6.
  • [72] Roller S., Seedhar P. 2002. Carvacrol and cinnamic acid inhibit microbial growth in fresh-cut melon and kiwifruit at 4° and 8°C. Letters in Applied Microbiology, 35, 390-394.
  • [73] Raybaudi-Massilia R.M., Mosqueda-Melgar J., Martin-Belloso O. 2006. Antimicrobial activity of essential oils on Salmonella enteritidis, Escherichia coli and Listeria innocua in fruit juices. Journal of Food Products, 69, 1579-1586.
  • [74] Cha D.S., Chinnan M.S., Choi J.H., Park H.J. 2002. Antimicrobial films based on N-alginate and κ-carrageen, Lebensm.-Wiss u.- Technol., 35, 715-719.
  • [75] Ku K-J., Hong Y-H., Song K.B., 2008. Mechanical properties of a Gellidium corneum edible film containing catechin and its application in sausages. Journal of Food Science, C: Food Chemistry, 73, 217-221.
  • [76] Karou D., Dico M.H., Simpore J., Traore A.S. 2005. Antioxidant and antimibacterial activities of polyphenols from ethnomedicinal plants of Burkina Faso. African Journal of Biotechnology, 4(8), 823-828.
  • [77] Gómez-Estaca J., Giménez B., Montero P., Gómez-Guillén M.C. 2009. Incorporation of antioxidant borage extract into edible films based on sole skin gelatin or a commercial fish gelatin. Journal of Food Engineering, 92, 78-85.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-66a507db-d350-453f-8d04-a750db97e33e
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.