PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2019 | 70 | 4 |

Tytuł artykułu

Food groups in dietary prevention of type 2 diabetes

Treść / Zawartość

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
According to the World Health Organization diabetes will be the seventh leading cause of death worldwide in 2030. Majority of diabetic patients suffer from type 2 diabetes (T2DM), which is mostly avoidable. The most important modifiable risk factors of type 2 diabetes are: overweight and obesity, improper diet, sedentary lifestyle and tobacco smoking. Even in prediabetic state, improving diet and physical activity can slow down or even stop progression to diabetes. In the view of health burden of diabetes it is essential to thoroughly investigate the risk factors and develop more specific preventive strategies. Recently published studies focus on food groups rather than individual products to assess the link between nutrition and risk of type 2 diabetes. Identifying food groups of possible beneficial and deleterious effect on the risk of type 2 diabetes could facilitate the dietary counselling. The aim of the overview is to summarize the possible association between consumption of food groups on the risk of type 2 diabetes on the basis of available literature. Observations from studies and meta-analyses indicate on an inverse association between consumption of fresh vegetables and fruit, whole grains, lean dairy, fish, nuts and the risk of type 2 diabetes. Food groups that seemed to increase the risk of type 2 diabetes are: red and processed meat, refined grains, sugar-sweetened beverages. It is important to note, that no individual nutrients, but diverse dietary pattern, composed of every recommended food group in adequate amounts can contribute to healthy lifestyle and T2DM prevention.
PL
Według Światowej Organizacji Zdrowia (WHO) do 2030 roku cukrzyca stanie się siódmą z kolei przyczyną zgonów na świecie. Większość pacjentów cierpi na cukrzycę typu 2, której podłoże jest w dużej mierze modyfikowalne. Najważniejszymi modyfikowalnymi czynnikami ryzyka cukrzycy są: nadwaga i otyłość, nieprawidłowa dieta, brak aktywności fizycznej oraz palenie tytoniu. Wprowadzenie interwencji w zakresie poprawy sposobu żywienia oraz zwiększenia aktywności fizycznej wśród pacjentów ze stanem przed cukrzycowym może spowolnić lub nawet zatrzymać progresję do pełnoobjawowej cukrzycy typu 2. Z powodu ogromnego zagrożenia dla zdrowia publicznego, którego przyczyną jest stały wzrost zachorowań na cukrzycę, istnieje konieczność badania czynników ryzyka w celu opracowania skutecznych programów zdrowotnych. Niedawno publikowane badania analizujące związek pomiędzy żywieniem a cukrzycą typu 2, skupiają się na grupach produktów, a nie na pojedynczych składnikach pokarmowych. Identyfikacja korzystnych oraz potencjalnie szkodliwych grup produktów wpływających na ryzyko cukrzycy typu 2 może okazać się bardzo pomocna w poradnictwie zdrowotnym. Celem artykułu przeglądowego jest podsumowanie zależności pomiędzy spożywaniem poszczególnych grup produktów a ryzykiem cukrzycy typu 2 w świetle aktualnej literatury naukowej. Do grup produktów, które w badaniach oraz meta-analizach powiązane są z niższym ryzykiem cukrzycy typu 2 należą: warzywa i owoce, pełnoziarniste produkty zbożowe, chudy nabiał, ryby oraz orzechy. Do grup produktów, które powiązane są z wyższym ryzykiem cukrzycy typu 2 należą: czerwone oraz przetworzone mięso, produkty zbożowe z oczyszczonego ziarna, słodzone napoje. Należy zaznaczyć, że nie pojedyncze składniki pokarmowe lecz zróżnicowana dieta, składająca się z zalecanych grup produktów w odpowiednich ilościach przyczynia się do prewencji cukrzycy typu 2.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

70

Numer

4

Opis fizyczny

p.347-357,ref.

Twórcy

  • Department of Social Medicine, Wroclaw Medical University, Bujwida str. 44, 50-345 Wroclaw, Poland
autor
  • Department of Dietetics, Wroclaw Medical University, Parkowa str. 34, Wroclaw, Poland
autor
  • Department of Social Medicine, Wroclaw Medical University, Bujwida str. 44, 50-345 Wroclaw, Poland

Bibliografia

  • 1. World Health Organization. Global Report on Diabetes. Isbn 2016; 978: 88.
  • 2. Schwingshackl L., Georg Hoffmann B., Anna-Maria Lampousi B., et al.: Food groups and risk of type 2 diabetes mellitus: a systematic review and meta-analysis of prospective studies. Eur J Epidemiol; 32. Epub ahead of print 2017. DOI: 10.1007/s10654-017-0246-y.
  • 3. Robertson A., Tirado C., Lobstein T., et al.: Food and health in Europe: a new basis for action. WHO Reg Publ Eur Ser 2004; i–xvi, 1-385, back cover.
  • 4. Meigs J.B., Nathan D.M., D R.B., et al.: Fasting and Postchallenge Glycemia and Cardiovascular Disease Risk The Framingham Offspring Study. Diabetes Care 2002; 25: 1845–50.
  • 5. Emerging Risk Factors Collaboration T. Diabetes mellitus, fasting blood glucose concentration, and risk of vascular disease: a collaborative meta-analysis of 102 prospective studies. Lancet 2010; 375: 2215–2222.
  • 6. Lindst J.O., Louheranta A., Mannelin M., et al:. The Finnish Diabetes Prevention Study (DPS) Lifestyle intervention and 3-year results on diet and physical activity FOR THE FINNISH DIABETES PREVENTION STUDY GROUP. Diabetes Care 2003; 26: 3230–6.
  • 7. Cefalu W.: American Diabetes Association. Standards of Medical Care in Diabetes - 2016. Diabetes Care; 39. Epub ahead of print 2016. DOI: 10.2337/dc16-S001 Diabetes.
  • 8. Yao B., Fang H., Xu W., et al.: Dietary fiber intake and risk of type 2 diabetes: a dose–response analysis of prospective studies. Eur J Epidemiol 2014; 29: 79–88.
  • 9. Wirström T., Hilding A., Gu H.F. et al.: Consumption of whole grain reduces risk of deteriorating glucose tolerance, including progression to prediabetes. Am J Clin Nutr 2013; 97: 179–187.
  • 10. Chanson-Rolle A., Meynier A., Aubin F., et al. Systematic Review and Meta-Analysis of Human Studies to Support a Quantitative Recommendation for Whole Grain Intake in Relation to Type 2 Diabetes. PLoS One; 10. Epub ahead of print 2015. DOI: 10.1371/journal.pone.0131377.
  • 11. O’Neil C.E., Keast D.R., Fulgoni V.L., et al. Food sources of energy and nutrients among adults in the US: NHANES 2003-2006. Nutrients 2012; 4: 2097–2120.
  • 12. Nettleton, Jennifer A.; McKeown, Nicola M.; Kanoni, Stavroula; Lemaitre, Rozenn N.; Hivert, Marie-France; Ngwa, Julius; van Rooij, Frank J.A.; Sonestedt, Emily; Wojczynski, Mary K.; Ye, Zheng; Tanaka T. Reviews / Commentaries / ADA Statements M E T A - A N A L Y S I S Interactions of Dietary Whole-Grain Intake With Fasting Glucose – and Insulin-Related. Diabetes Care 2010; 33: 2684–2691.
  • 13. Fardet A. New hypotheses for the health-protective mechanisms of whole-grain cereals: what is beyond fibre? Epub ahead of print 2017. DOI: 10.1017/S0954422410000041.
  • 14. Lockyer S., Nugent A.P. Health effects of resistant starch. Nutr Bull 2017; 42: 10–41.
  • 15. Wong T.H.T., Louie J.C.Y. The relationship between resistant starch and glycemic control: A review on current evidence and possible mechanisms. Starch - Stärke 2017; 69: 1600205.
  • 16. Jenkins D.J., Wolever T.M., Taylor R.H., et al. Glycemic index of foods: a physiological basis for carbohydrate exchange. Am J Clin Nutr 1981; 34: 362–366.
  • 17. Eleazu CO. The concept of low glycemic index and glycemic load foods as panacea for type 2 diabetes mellitus; prospects, challenges and solutions. Afr Health Sci 2016; 16: 468–479.
  • 18. Foster-Powell K., Holt S., Brand-Miller J. International table of glycemic index and glycemic load values: 2002. Am J Clin Nutr 2002; 76: 55–56.
  • 19. Bhupathiraju S.N., Tobias D.K., Malik V.S., et al. Glycemic index, glycemic load, and risk of type 2 diabetes: results from 3 large US cohorts and an updated meta-analysis 1–3. Am J Clin Nutr 2014; 100: 218–32.
  • 20. Krishnan S., Rosenberg L., Singer M., et al. Glycemic Index, Glycemic Load, and Cereal Fiber Intake and Risk of Type 2 Diabetes in US Black Women. Arch Intern Med 2007; 167: 2304.
  • 21. Villegas R., Liu S., Gao Y-T., et al. Prospective Study of Dietary Carbohydrates, Glycemic Index, Glycemic Load, and Incidence of Type 2 Diabetes Mellitus in Middle-aged Chinese Women. Arch Intern Med 2007; 167: 2310.
  • 22. Similä M.E., Valsta L.M., Kontto J.P., et al. Low-, medium- and high-glycaemic index carbohydrates and risk of type 2 diabetes in men. Br J Nutr 2011; 105: 1258–64.
  • 23. Jenkins D.J.A., Kendall C.W.C., McKeown-Eyssen G., et al. Effect of a Low–Glycemic Index or a High–Cereal Fiber Diet on Type 2 Diabetes. JAMA 2008; 300: 2742.
  • 24. Gomes J.M.G., Fabrini S.P., Alfenas R. de C.G. Low glycemic index diet reduces body fat and attenuates inflammatory and metabolic responses in patients with type 2 diabetes. Arch Endocrinol Metab 2017; 61: 137–144.
  • 25. Ma Y., Olendzki B.C., Merriam P.A., et al. A randomized clinical trial comparing low–glycemic index versus ADA dietary education among individuals with type 2 diabetes. Nutrition 2008; 24: 45–56.
  • 26. Tong X., Dong J-Y., Wu Z-W., et al. Dairy consumption and risk of type 2 diabetes mellitus: a meta-analysis of cohort studies. Eur J Clin Nutr 2011; 65: 1027–103162.
  • 27. Pittas A.G., Lau J., Hu F., et al. The Role of Vitamin D and Calcium in type 2 diabetes. A systematic Review and Meta-Analysis *. J Clin Endocrinol Metab 2007; 92: 2017–2029.
  • 28. Liu S., Choi H.K., Ford E., et al. A Prospective Study of Dairy Intake and the Risk of Type 2 Diabetes in Women. Diabetes Care 2006; 29: 1579–84.
  • 29. Pal S., Ellis V., Dhaliwal S. Effects of whey protein isolate on body composition, lipids, insulin and glucose in overweight and obese individuals. Br J Nutr 2010; 104: 716–723.
  • 30. Ryan A.T., Feinle-Bisset C., Kallas A., et al. Intraduodenal protein modulates antropyloroduodenal motility, hormone release, glycemia, appetite, and energy intake in lean men. Am J Clin Nutr 2012; 96: 474–82.
  • 31. Malik V.S., Sun Q., Van Dam R.M., et al. Adolescent dairy product consumption and risk of type 2 diabetes in middle-aged women 1–3. Am J Clin Nutr 2011; 94: 854–61.
  • 32. Sluijs I., Forouhi N.G., Beulens J.W., et al. The amount and type of dairy product intake and incident type 2 diabetes: results from the EPIC-InterAct Study 1–3. Am J Clin Nutr 2012; 96: 382–90.
  • 33. Chen M., Sun Q., Giovannucci E., et al. Dairy consumption and risk of type 2 diabetes: 3 cohorts of US adults and an updated meta-analysis. Epub ahead of print 2014. DOI: 10.1186/s12916-014-0215-1.
  • 34. Fernandez M.A., Marette A. Potential Health Benefits of Combining Yogurt and Fruits Based on Their Probiotic and Prebiotic Properties 1-3. Adv Nutr 2017; 8: 155S–164S.
  • 35. Kassaian N., Feizi A., Ashraf Aminorroaya, et al. The effects of probiotics and synbiotic supplementation on glucose and insulin metabolism in adults with prediabetes: a double-blind randomized clinical trial. Acta Diabetol 2018; 55: 1019–1028.
  • 36. Jarosz M. Nutritional Guidelines for Polish Population (Normy żywienia dla populacji Polski). Warszawa: Instytut Żywności i Żywienia, http://zywnosc.com.pl/wp-content/uploads/2017/12/normy-zywienia-dla-populacji-polski-2017-1.pdf (2017, accessed 2 March 2018).
  • 37. United States Department of Agriculture and Department of Health and Human Services. 2015 – 2020 Dietary Guidelines for Americans. Washington. Epub ahead of print 2015. DOI: 10.1097/NT.0b013e31826c50af.
  • 38. Jackie Boucher and L., Evert A.B., Boucher J.L., et al. Nutrition Therapy Recommendations for the Management of Adults With Diabetes. Diabetes Care; 37. Epub ahead of print 2014. DOI: 10.2337/dc14-S120.
  • 39. Ke Q., Chen C., He F., et al. Association between dietary protein intake and type 2 diabetes varies by dietary pattern. Diabetol Metab Syndr 2018; 10: 48.
  • 40. Feskens E.J.M., Sluik D., Van Woudenbergh G.J. Meat consumption, diabetes, and its complications. Curr Diab Rep 2013; 13: 298–306.
  • 41. Kim Y., Keogh J.B., Clifton P.M. Consumption of red and processed meat and refined grains for 4weeks decreases insulin sensitivity in insulin-resistant adults: a randomized crossover study. Metabolism 2016; 68: 173–183.
  • 42. Zelber-Sagi S., Ivancovsky-Wajcman D., Fliss N., et al. High red and processed meat consumption is associated with non-alcoholic fatty liver disease and insulin resistance. J Hepatol 2018; 68: 1239–1246.
  • 43. Liu S., Van Der Schouw Y.T., Sabita, et al. Intake of dietary saturated fatty acids and risk of type 2 diabetes in the European Prospective Investigation into Cancer and Nutrition-Netherlands cohort: associations by types, sources of fatty acids and substitution by macronutrients. Eur J Nutr. Epub ahead of print 2018. DOI: 10.1007/s00394-018-1630-4.
  • 44. Baghdasarian S., Lin H-P., Pickering R., et al. Dietary Cholesterol Intake Is Not Associated with Risk of Type 2 Diabetes in the Framingham Offspring Study. Nutrients 2018; 10: 665.
  • 45. Guess N., Perreault L., Kerege A., et al. Dietary Fatty Acids Differentially Associate with Fasting Versus 2-Hour Glucose Homeostasis: Implications for The Management of Subtypes of Prediabetes. Epub ahead of print 2016. DOI: 10.1371/journal.pone.0150148.
  • 46. Wanders A.J., Alssema M., De Koning E., et al. Fatty acid intake and its dietary sources in relation with markers of type 2 diabetes risk: The NEO study. Eur J Clin Nutr 2016; 71: 245–251.
  • 47. Fernandez-Real J.M., McClain D., Manco M. Mechanisms Linking Glucose Homeostasis and Iron Metabolism Toward the Onset and Progression of Type 2 Diabetes. Diabetes Care 2015; 38: 2169–2176.
  • 48. de la Monte S.M., Tong M., Lawton M., et al. Nitrosamine exposure exacerbates high fat diet-mediated type 2 diabetes mellitus, non-alcoholic steatohepatitis, and neurodegeneration with cognitive impairment. Mol Neurodegener 2009; 4: 54.
  • 49. Micha R., Michas G., Mozaffarian D. Unprocessed red and processed meats and risk of coronary artery disease and type 2 diabetes--an updated review of the evidence. Curr Atheroscler Rep 2012; 14: 515–24.
  • 50. Liu G., Zong G., Wu K., et al. Meat Cooking Methods and Risk of Type 2 Diabetes: Results From Three Prospective Cohort Studies. Diabetes Care 2018; 41: 1049–1060.
  • 51. Kim Y-S., Xun P., Iribarren C., et al. Intake of fish and long‑chain omega‑3 polyunsaturated fatty acids and incidence of metabolic syndrome among American young adults: a 25‑year follow‑up study. Eur J Nutr 2016; 55: 1707–16.
  • 52. Rylander C., Sandanger T.M., Engeset D., et al. Consumption of Lean Fish Reduces the Risk of Type 2 Diabetes Mellitus: A Prospective Population Based Cohort Study of Norwegian Women. PLoS One; 9. Epub ahead of print 2014. DOI: 10.1371/journal.pone.0089845.
  • 53. Chua J., Chia A-R., Chee M.L., et al. The relationship of dietary fish intake to diabetic retinopathy and retinal vascular caliber in patients with type 2 diabetes. Sci Rep 2018; 8: 730.
  • 54. Mirmiran P., Esfandyari S., Moghadam S.K., et al. Fatty acid quality and quantity of diet and risk of type 2 diabetes in adults: Tehran Lipid and Glucose Study. J Diabetes Complications 2018; 32: 655–659.
  • 55. O’mahoney L.L., Matu J., Price O.J., et al. Omega-3 polyunsaturated fatty acids favourably modulate cardiometabolic biomarkers in type 2 diabetes: a meta-analysis and meta-regression of randomized controlled trials. Cardiovasc Diabetol 2018; 17: 98.
  • 56. Wu J.H., Micha R., Imamura F., et al. Omega-3 Fatty Acids and incident Type 2 Diabetes: A Systematic Review and Meta-Analysis. Br J Nutr 2012; 107: 214–21.
  • 57. Chen C., Yu X., Shao S. Effects of Omega-3 Fatty Acid Supplementation on Glucose Control and Lipid Levels in Type 2 Diabetes: A Meta-Analysis. Epub ahead of print 2015. DOI: 10.1371/journal.pone.0139565.
  • 58. Abbott K.A., Burrows T.L., Thota R.N., et al. Do -3 PUFAs affect insulin resistance in a sex-specific manner? A systematic review and meta-analysis of randomized controlled trials. Am J Clin Nutr 2016; 104: 1470–1484.
  • 59. Tamez M., Virtanen J.K., Lajous M. Egg consumption and risk of incident type 2 diabetes: a dose–response meta-analysis of prospective cohort studies. Br J Nutr 2016; 115: 2212–8.
  • 60. Wallin A., Forouhi N., Wolk A., et al. Egg consumption and risk of type 2 diabetes: a prospective study and dose–response meta-analysis. Diabetologia 2016; 59: 1204–13.
  • 61. Jarosz J.: Normy żywienia dla populacji polskiej – nowelizacja, http://www.izz.waw.pl/attachments/article/33/NormyZywieniaNowelizacjaIZZ2012.pdf (2012, accessed 25 March 2017).
  • 62. Wani T.A., Masoodi F.A., Gani A., et al. Olive oil and its principal bioactive compound_ Hydroxytyrosol – A review of the recent literature. Epub ahead of print 2018. DOI: 10.1016/j.tifs.2018.05.001.
  • 63. Jemai H., El Feki A., Sayadi S. Antidiabetic and Antioxidant Effects of Hydroxytyrosol and Oleuropein from Olive Leaves in Alloxan-Diabetic Rats. J Agric Food Chem 2009; 57: 8798–8804.
  • 64. Giugliano J.A., Goudevenos D.B., Panagiotakos C-M., et al. The Effect of Mediterranean Diet on Metabolic Syndrome and its Components: The Effect of Mediterranean Diet on Metabolic Syndrome and its Components. JAC 2011; 57: 1299–1313.
  • 65. Guasch-Ferré M., Hruby A., Salas-Salvadó J., et al. Olive oil consumption and risk of type 2 diabetes in US women 1-3. Am J Clin Nutr 2015; 102: 479–86.
  • 66. Orsavova J., Misurcova L., Ambrozova J.V., et al. Fatty Acids Composition of Vegetable Oils and Its Contribution to Dietary Energy Intake and Dependence of Cardiovascular Mortality on Dietary Intake of Fatty Acids. Int J Mol Sci 2015; 16: 12871–90.
  • 67. Nigam P., Bhatt S., Misra A., et al. Effect of a 6-Month Intervention with Cooking Oils Containing a High Concentration of Monounsaturated Fatty Acids (Olive and Canola Oils) Compared with Control Oil in Male Asian Indians with Nonalcoholic Fatty Liver Disease. Diabetes Technol Ther 2014; 16: 255–261.
  • 68. Goyal A., Sharma V., Upadhyay N., et al. Flax and flaxseed oil: an ancient medicine & modern functional food. J Food Sci Technol 2014; 51: 1633–1653.
  • 69. Bloedon L.T., Balikai S., Chittams J., et al. Flaxseed and cardiovascular risk factors: results from a double blind, randomized, controlled clinical trial. J Am Coll Nutr 2008; 27: 65–74.
  • 70. Sotoudeh G., Abshirini M., Student MSPH, et al. Higher dietary total antioxidant capacity is inversely related to prediabetes: A case-control study. Nutrition 2018; 46: 20–25.
  • 71. Rienks J., Barbaresko J., Oluwagbemigun K., et al. Polyphenol exposure and risk of type 2 diabetes: dose-response meta-analyses and systematic review of prospective cohort studies. Am J Clin Nutr 2018; 108: 49–61.
  • 72. Wang P.Y., Fang J.C., Gao Z.H., et al. Higher intake of fruits, vegetables or their fiber reduces the risk of type 2 diabetes: A meta-analysis. J Diabetes Investig 2016; 7: 56–69.
  • 73. Shin J.Y., Kim J.Y., Kang H.T., et al. Effect of fruits and vegetables on metabolic syndrome: a systematic review and meta-analysis of randomized controlled trials. Int J Food Sci Nutr 2015; 66: 416–425.
  • 74. Wallace I.R., Mcevoy C.T., Hunter S.J., et al. Dose-Response Effect of Fruit and Vegetables on Insulin Resistance in People at High Risk of Cardiovascular Disease A randomized controlled trial. Diabetes Care 2013; 36: 3888–96.
  • 75. Mamluk L., O’Doherty M.G., Orfanos P., et al. Fruit and vegetable intake and risk of incident of type 2 diabetes: results from the consortium on health and ageing network of cohorts in Europe and the United States (CHANCES). Eur J Clin Nutr 2017; 71: 83–91.
  • 76. Mursu J., Virtanen J.K., Tuomainen T-P., et al. Intake of fruit, berries, and vegetables and risk of type 2 diabetes in Finnish men: the Kuopio Ischaemic Heart Disease Risk Factor Study. Am J Clin Nutr 2014; 99: 328–333.
  • 77. Villegas R., Shu X.O., Gao Y-T., et al. Vegetable but Not Fruit Consumption Reduces the Risk of Type 2 Diabetes in Chinese Women. J Nutr 2008; 138: 574–580.
  • 78. Becerra-Tomas N., es Díaz-Lopez A., Rosique-Esteban N., et al. Legume consumption is inversely associated with type 2 diabetes incidence in adults: A prospective assessment from the PREDIMED study. Epub ahead of print 2018. DOI: 10.1016/j.clnu.2017.03.015.
  • 79. Jia X., Zhong L., Song Y., et al. Consumption of citrus and cruciferous vegetables with incident type 2 diabetes mellitus based on a meta-analysis of prospective study. Epub ahead of print 2016. DOI: 10.1016/j.pcd.2015.12.004.
  • 80. Singh G.M., Micha R., Khatibzadeh S., et al. Global, Regional, and National Consumption of Sugar-Sweetened Beverages, Fruit Juices, and Milk: A Systematic Assessment of Beverage Intake in 187 Countries. PLoS One; 10. Epub ahead of print 2015. DOI: http://dx.doi.org/10.1371/journal. pone.0124845.
  • 81. Johnson R.K., Appel L.J., Brands M., et al. Dietary sugars intake and cardiovascular health: a scientific statement from the American Heart Association. Circulation 2009; 120: 1011–20.
  • 82. Malik V.S., Popkin B.M., Bray G.A., et al. Sugar-Sweetened Beverages and Risk of Metabolic Syndrome and Type 2 Diabetes. Diabetes Care 2010; 33: 2477–83.
  • 83. Ma J., Jacques P.F., Meigs J.B., et al. Sugar-Sweetened Beverage but Not Diet Soda Consumption Is Positively Associated with Progression of Insulin Resistance and Prediabetes. J Nutr 2016; 146: 2544–2550.
  • 84. Anari R., Amani R., Veissi M. Sugar-sweetened beverages consumption is associated with abdominal obesity risk in diabetic patients. Diabetes Metab Syndr Clin Res Rev. Epub ahead of print 2017. DOI: 10.1016/j.dsx.2017.04.024.
  • 85. Stanhope K.L., Schwarz J.M., Keim N.L., et al. Consuming fructose-sweetened, not glucose- sweetened, beverages increases visceral adiposity and lipids and decreases insulin sensitivity in overweight/obese humans. 119. Epub ahead of print 2009. DOI: 10.1172/JCI37385.
  • 86. Jiang R., Manson J.E., Stampfer M.J., et al. Nut and Peanut Butter Consumption and Risk of Type 2 Diabetes in Women. JAMA 2002; 288: 2554.
  • 87. Kochar J., Gaziano J.M., Djoussé L. Nut Consumption and Risk of Type 2 Diabetes in the Physicians’ Health Study. Eur J Clin Nutr 2010; 64: 75–9.
  • 88. Wu L., Wang Z., Zhu J., et al. Nut consumption and risk of cancer and type 2 diabetes: a systematic review and meta-analysis. Nutr Rev V R 2015; 73: 409–425.
  • 89. Viguiliouk E., Kendall C.W.C., Mejia S.B., et al. Effect of Tree Nuts on Glycemic Control in Diabetes: A Systematic Review and Meta-Analysis of Randomized Controlled Dietary Trials. PLoS One; 9. Epub ahead of print 2014. DOI: 10.1371/journal.pone.0103376.
  • 90. Zhou D., Yu H., He F., et al. Nut consumption in relation to cardiovascular disease risk and type 2 diabetes: a systematic review and meta-analysis of prospective studies. Am J Clin Nutr 2014; 100: 270–7.
  • 91. Kim Y., Keogh J.B., Clifton P.M. Benefits of nut consumption on insulin resistance and cardiovascular risk factors: Multiple potential mechanisms of actions. Nutrients; 9. Epub ahead of print 2017. DOI: 10.3390/nu9111271.
  • 92. Kirpichnikov D., Sowers J.R. Diabetes mellitus and diabetes-associated vascular disease. Trends Endocrinol Metab 2001; 12: 225–30.
  • 93. Arab L., Dhaliwal S.K., Martin C.J., et al. Association between walnut consumption and diabetes risk in NHANES. Diabetes Metab Res Rev 2018; 1–8.
  • 94. Kalita S., Khandelwal S., Madan J., et al. Almonds and Cardiovascular Health: A Review. Nutrients; 10. Epub ahead of print 11 April 2018. DOI: 10.3390/nu10040468.
  • 95. Chen C-M., Liu J-F., Li S-C., et al. Almonds ameliorate glycemic control in Chinese patients with better controlled type 2 diabetes: a randomized, crossover, controlled feeding trial. Nutr Metab (Lond) 2017; 14: 51.
  • 96. Li S-C., Liu Y-H., Liu J-F., et al. Almond consumption improved glycemic control and lipid profiles in patients with type 2 diabetes mellitus. Metabolism 2011; 60: 474–479.
  • 97. Jenkins D.J.A., Kendall C.W.C., Marchie A., et al. Effect of almonds on insulin secretion and insulin resistance in nondiabetic hyperlipidemic subjects: a randomized controlled crossover trial. Metabolism 2008; 57: 882–887.
  • 98. Pan A., Sun Q., Manson J.E., et al. Walnut consumption is associated with lower risk of type 2 diabetes in women. J Nutr 2013; 143: 512–8.
  • 99. Arya S.S., Salve A.R., Chauhan S. Peanuts as functional food: a review. J Food Sci Technol 2016; 53: 31–41.
  • 100. Wien M., Oda K., Sabaté J. A randomized controlled trial to evaluate the effect of incorporating peanuts into an American Diabetes Association meal plan on the nutrient profile of the total diet and cardiometabolic parameters of adults with type 2 diabetes. Nutr J 2014; 13: 10.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-669dc23a-13e3-4281-86a7-563c327c70b4
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.