PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2019 | 41 | 10 |

Tytuł artykułu

A simple and reliable method for creating PCR-detectable mutants in Arabidopsis with the polycistronic tRNA-gRNA CRISPR/Cas9 system

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
To develop an easy and robust method for creating genetically stable and easily detectable Arabidopsis mutants, we adopted the polycistronic tRNA–gRNA CRISPR/Cas9 (PTG/Cas9) system, a multiplex gene-editing tool in rice, with PTOX as the reporter gene. The PTG/Cas9 system has a great potential in generating large deletions detectable by PCR, which greatly simplifies the laborious work of mutant screening. We constructed a PTOX–PTG/Cas9 system with five gRNAs and introduced it into Arabidopsis. At T1 generation, 24.4% of transgenic plants were chimeric with PCR-detectable deletions in PTOX locus, but no homozygous mutant was found, indicating that gene editing occurred predominantly in somatic cells. After a self-cross propagation, 60% of T1 chimeric plants were able to produce homozygous, heterozygous, or bi-allelic ptox offsprings. Inheritable homozygous ptox mutants without Cas9 gene can be obtained earliest at T2 generation. We further targeted five other genes using the same procedure and achieved homozygous Cas9-free mutants with large deletions for all genes within three generations. We established a standard and reliable protocol to generate stable inherited deletion mutants in 2–3 generations along with simple PCR screening methods. We conclude that the rice PTG/Cas9 system is an efficient, easy, and rapid tool to edit genes in Arabidopsis. We propose that it could be applied to other genes in Arabidopsis, and it might have the potential to edit genes in other plant species as well.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

41

Numer

10

Opis fizyczny

Article 170 [14p.], fig.,ref.

Twórcy

autor
  • Chinese Education Ministry’s Key Laboratory of Western Resources and Modern Biotechnology, Key Laboratory of Biotechnology Shaanxi Province, College of Life Sciences, Northwest University (Xi’an), 229 North Taibai Road, Xi’an, Shaanxi 710069, China
autor
  • Chinese Education Ministry’s Key Laboratory of Western Resources and Modern Biotechnology, Key Laboratory of Biotechnology Shaanxi Province, College of Life Sciences, Northwest University (Xi’an), 229 North Taibai Road, Xi’an, Shaanxi 710069, China
autor
  • Chinese Education Ministry’s Key Laboratory of Western Resources and Modern Biotechnology, Key Laboratory of Biotechnology Shaanxi Province, College of Life Sciences, Northwest University (Xi’an), 229 North Taibai Road, Xi’an, Shaanxi 710069, China
autor
  • Chinese Education Ministry’s Key Laboratory of Western Resources and Modern Biotechnology, Key Laboratory of Biotechnology Shaanxi Province, College of Life Sciences, Northwest University (Xi’an), 229 North Taibai Road, Xi’an, Shaanxi 710069, China
autor
  • Chinese Education Ministry’s Key Laboratory of Western Resources and Modern Biotechnology, Key Laboratory of Biotechnology Shaanxi Province, College of Life Sciences, Northwest University (Xi’an), 229 North Taibai Road, Xi’an, Shaanxi 710069, China
autor
  • Chinese Education Ministry’s Key Laboratory of Western Resources and Modern Biotechnology, Key Laboratory of Biotechnology Shaanxi Province, College of Life Sciences, Northwest University (Xi’an), 229 North Taibai Road, Xi’an, Shaanxi 710069, China
autor
  • Chinese Education Ministry’s Key Laboratory of Western Resources and Modern Biotechnology, Key Laboratory of Biotechnology Shaanxi Province, College of Life Sciences, Northwest University (Xi’an), 229 North Taibai Road, Xi’an, Shaanxi 710069, China
autor
  • Chinese Education Ministry’s Key Laboratory of Western Resources and Modern Biotechnology, Key Laboratory of Biotechnology Shaanxi Province, College of Life Sciences, Northwest University (Xi’an), 229 North Taibai Road, Xi’an, Shaanxi 710069, China
autor
  • Chinese Education Ministry’s Key Laboratory of Western Resources and Modern Biotechnology, Key Laboratory of Biotechnology Shaanxi Province, College of Life Sciences, Northwest University (Xi’an), 229 North Taibai Road, Xi’an, Shaanxi 710069, China
autor
  • Chinese Education Ministry’s Key Laboratory of Western Resources and Modern Biotechnology, Key Laboratory of Biotechnology Shaanxi Province, College of Life Sciences, Northwest University (Xi’an), 229 North Taibai Road, Xi’an, Shaanxi 710069, China
autor
  • Chinese Education Ministry’s Key Laboratory of Western Resources and Modern Biotechnology, Key Laboratory of Biotechnology Shaanxi Province, College of Life Sciences, Northwest University (Xi’an), 229 North Taibai Road, Xi’an, Shaanxi 710069, China

Bibliografia

  • Brinkman EK, Kousholt AN, Harmsen T, Leemans C, Chen T, Jonkers J et al (2018) Easy quantification of template-directed CRISPR/Cas9 editing. Nucleic Acids Res 46:e58
  • Clough SJ, Bent AF (1998) Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J 16:735–743
  • Cong L, Ran FA, Cox DM, Lin S, Barretto RP, Habib N et al (2013) Multiplex genome engineering using CRISPR/Cas systems. Science 339:819–823
  • Ding Y, Li H, Chen L, Xie K (2016) Recent advances in genome editing using CRISPR/Cas9. Front Plant Sci 7:703
  • Doudna JA, Charpentier E (2014) The new frontier of genome engineering with CRISPR-Cas9. Science 346:1258096
  • Edwards K, Johnstone C, Thompson C (1991) A simple and rapid method for the preparation of plant genomic DNA for PCR analysis. Nucleic Acids Res 19:1349
  • Falabella M, Sun L, Barr J, Pena AZ, Kershaw EE, Gingras S et al (2017) Single-step qPCR and dPCR detection of diverse CRISPR-Cas9 gene editing events in vivo. G3 (Bethesda) 7:3533–3542
  • Feng Z, Zhang B, Ding W, Liu X, Yang D, Wei P et al (2013) Efficient genome editing in plants using a CRISPR/Cas system. Cell Res 23:1229–1232
  • Feng Z, Mao Y, Xu N, Zhang B, Wei P, Yang D et al (2014) Multigeneration analysis reveals the inheritance, specificity, and patterns of CRISPR/Cas-induced gene modifications in Arabidopsis. Proc Natl Acad Sci USA 111:4632–4637
  • Fineran PC, Charpentier E (2012) Memory of viral infections by CRISPR-Cas adaptive immune systems: acquisition of new information. Virology 434:202–209
  • Fu A, Aluru M, Rodermel SR (2009) Conserved active site sequences in Arabidopsis plastid terminal oxidase (PTOX): in vitro and in planta mutagenesis studies. J Biol Chem 284:22625–22632
  • Fu A, Liu H, Yu F, Kambakam S, Luan S, Rodermel S (2012) Alternative oxidases (AOX1a and AOX2) can functionally substitute for plastid terminal oxidase in Arabidopsis chloroplasts. Plant Cell 24:1579–1595
  • Gao Y, Zhao Y (2014) Self-processing of ribozyme-flanked RNAs into guide RNAs in vitro and in vivo for CRISPR-mediated genome editing. J Integr Plant Biol 56:343–349
  • Gao X, Chen J, Dai X, Zhang D, Zhao Y (2016) An effective strategy for reliably isolating heritable and Cas9-free Arabidopsis mutants generated by CRISPR/Cas9-mediated genome editing. Plant Physiol 171:1794–1800
  • Gasiunas G, Barrangou R, Horvath P, Siksnys V (2012) Cas9-crRNA ribonucleoprotein complex mediates specific DNA cleavage for adaptive immunity in bacteria. Proc Natl Acad Sci USA 109:15539–15540
  • Hsiau T, Maures T, Waite K, Yang J, Kelso R, Holden K et al (2018) Inference of CRISPR edits from Sanger trace data. bioRxiv. https://doi.org/10.1101/251082
  • Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA, Charpentier E (2012) A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 337:816–821
  • Kleinboelting N, Huep G, Appelhagen I, Viehoever P, Li Y, Weisshaar B (2015) The structural features of thousands of T-DNA insertion sites are consistent with a double-strand break repair-based insertion mechanism. Mol Plant 8:1651–1664
  • Kleinboelting N, Huep G, Weisshaar B (2017) Enhancing the GABI- Kat Arabidopsis thaliana T-DNA insertion mutant database by incorporating Araport11 annotation. Plant Cell Physiol 58:e7
  • Lei J, Xu X, Dai P, Li J, Zhang J, Liu X (2016) Functional analysis of different truncated U3 promoters in cotton. Cotton Sci 28:307–314 (in Chinese)
  • Li Y, Rosso MG, Ulker B, Weisshaar B (2006) Analysis of T-DNA insertion site distribution patterns in Arabidopsis thaliana reveals special features of genes without insertions. Genomics 87:645–652
  • Li J, Norville JE, Aach J, Mccormack M, Zhang D, Bush J et al (2013) Multiplex and homologous recombination-mediated genome editing in Arabidopsis and Nicotiana benthamiana using guide RNA and Cas9. Nat Biotechnol 31:688–691
  • Li C, Chen C, Chen H, Wang S, Chen X, Cui Y (2018) Verification of DNA motifs in Arabidopsis using CRISPR/Cas9-mediated mutagenesis. Plant Biotechnol J. https://doi.org/10.1111/pbi.12886
  • Liu W, Yuan JS, Stewart CN (2013) Advanced genetic tools for plant biotechnology. Nat Rev Genet 14:781–793
  • Liu X, Wu S, Xu J, Sui C, Wei J (2017) Application of CRISPR/Cas9 in plant biology. Acta Pharmaceutica Sinica B 7:292–302
  • Ma X, Zhang Q, Zhu Q, Liu W, Chen Y, Qiu R et al (2015) A robust CRISPR/Cas9 system for convenient, high-efficiency multiplex genome editing in monocot and dicot plants. Molecular Plant 8:1274–1284
  • Ma X, Zhu Q, Chen Y, Liu Y (2016) CRISPR/Cas9 platforms for genome editing in plants: developments and applications. Mol Plant 9:961–974
  • Mali P, Yang L, Esvelt KM, Aach J, Guell M, Dicarlo JE et al (2013) RNA-guided human genome engineering via Cas9. Science 339:823–826
  • Mock U, Hauber I, Fehse B (2016) Digital PCR to assess gene-editing frequencies (GEF-dPCR) mediated by designer nucleases. Nat Protoc 11:598–615
  • Monia BP, Ecker DJ, Crooke ST (1990) New perspectives on the structure and function of ubiquitin. Nat Biotechnol 8:209–215
  • Nekrasov V, Staskawicz BJ, Weigel D, Jones JD, Kamoun S (2013) Targeted mutagenesis in the model plant Nicotiana benthamiana using Cas9 RNA-guided endonuclease. Nat Biotechnol 31:691–693
  • Nissim L, Perli SD, Fridkin A, Perezpinera P, Lu TK (2014) Multiplexed and programmable regulation of gene networks with an integrated RNA and CRISPR/Cas toolkit in human cells. Mol Cell 54:698–710
  • O’Malley RC, Ecker JR (2010) Linking genotype to phenotype using the Arabidopsis unimutant collection. Plant J 61:928–940
  • Ozkaynak E, Finley D, Solomon MJ, Varshavsky A (1987) The yeast ubiquitin genes: a family of natural gene fusions. EMBO J 6:1429–1439
  • Qi W, Zhu T, Tian Z, Li C, Zhang W, Song R (2016) High-efficiency CRISPR/Cas9 multiplex gene editing using the glycine tRNA-processing system-based strategy in maize. BMC Biotechnol 16:58
  • Sentmanat MF, Peters ST, Florian CP, Connelly JP, Pruett-Miller SM (2018) A survey of validation strategies for CRISPR-Cas9 editing. Scientific Rep 8:888
  • Shan Q, Wang Y, Li J, Zhang Y, Chen K, Liang Z et al (2013) Targeted genome modification of crop plants using a CRISPR-Cas system. Nat Biotechnol 31:686–688
  • Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680
  • Wang D, Fu A (2016) The plastid terminal oxidase is a key factor balancing the redox state of thylakoid membrane. Enzymes 40:143–171
  • Wang Z, Xing H, Dong L, Zhang H, Han C, Wang X et al (2015) Egg cell-specific promoter-controlled CRISPR/Cas9 efficiently generates homozygous mutants for multiple target genes in Arabidopsis in a single generation. Genome Biol 16:144
  • Wang Z, Wang S, Li D, Zhang Q, Li L, Zhong C et al (2018) Optimized paired-sgRNA/Cas9 cloning and expression cassette triggers high-efficiency multiplex genome editing in kiwifruit. Plant Biotechnol J 16:1424–1433
  • Xie K, Minkenberg B, Yang Y (2015) Boosting CRISPR/Cas9 multiplex editing capability with the endogenous tRNA-processing system. Proc Natl Acad Sci USA 112:3570–3575
  • Yan L, Wei S, Wu Y, Hu R, Li H, Yang W et al (2015) High-efficiency genome editing in Arabidopsis using YAO promoter-driven CRISPR/Cas9 system. Mol Plant 8:1820–1823
  • Yang Z, Steentoft C, Hauge C, Hansen LK, Thomsen AL, Niola F et al (2015) Fast and sensitive detection of indels induced by precise gene targeting. Nucleic Acids Res 43:e59
  • Zhang Z, Mao Y, Ha S, Liu W, Botella JR, Zhu J (2016) A multiplex CRISPR/Cas9 platform for fast and efficient editing of multiple genes in Arabidopsis. Plant Cell Rep 35:1519–1533

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-668fa739-5aca-4ee5-b41d-fb519755d51c
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.