Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2019 | 28 | 4 |
Tytuł artykułu

Biosurfactant production by a newly isolated Enterobacter cloacae B14 capable of utilizing spent engine oil

Warianty tytułu
Języki publikacji
This work aims to investigate biosurfactant production by a bacterium capable of utilizing spent engine oil. The effects of pH and temperature on the growth of this bacterium on spent engine oil were determined. The bacterium was isolated from petroleum-contaminated soil. Based on 16S rRNA gene sequence, it was identified as Enterobacter cloacae with 99% identity. Growth of Enterobacter cloacae B14 on mineral medium containing 1% (v/v) spent engine oil was optimum when incubated at 30℃ . The bacterium showed the ability to grow under a wide range of pH medium, whereas the highest specific growth rate (0.29 hr-1) was obtained when grown under pH 7. Biosurfactant production by E. cloacae B14 was observed when grown in mineral medium containing 1% (w/v) glucose. Cell-free supernatant showed 42.2% emulsification activity (E24) against spent engine oil. Such activity was higher than some previous works and was obtained from a lower amount of biomass. Positive results from oil displacement, drop collapse and CTAB-methylene blue agar tests strongly indicated that strain B14 is an effective biosurfactant producer. Therefore, Enterobacter cloacae B14 has the potential for applications in bioremediation of oil-contaminated sites due to its biosurfactant production and growth on spent engine oil.
Słowa kluczowe
Opis fizyczny
  • Department of Microbiology, Faculty of Science, Khon Kaen University, Thailand
  • Department of Microbiology, Faculty of Science, Khon Kaen University, Thailand
  • Department of Microbiology, Faculty of Science, Khon Kaen University, Thailand
  • 1. SATO H., AOKI Y. Mutagenesis by environmental pollutants and bio-monitoring of environmental mutagens. Curr Drug Metab. 3, 311, 2002.
  • 2. DAVE D., GHALY A. E. Remediation technologies for marine oil spills: a critical review and comparative analysis. Am. J. Environ. Sci. 7, 423, 2011.
  • 3. GUDIÑA E.J., PEREIRA J.F.B., RODRIGUES L.R., COUTINHO J.A.P., TEIXEIRA J.A. Isolation and study of microorganisms from oil samples for application in Microbial Enhanced Oil Recovery. Int. Biodeterior. Biodegrad. 68, 56, 2012.
  • 4. ISMAIL W., ALHAMAD N.A., EL-SAYED W.S., EL NAYAL A.M., CHIANG Y., HAMZAH R.Y. Bacterial degradation of the saturate fraction of Arabian light crude oil: biosurfactant production and the effect of ZnO nanoparticles. J. Pet. Environ. Biotechnol. 4, 163, 2013.
  • 5. WILSON S.C., JONES K.C. Bioremediation of soil contaminated with polynuclear aromatic hydrocarbons (PAHs): a review. Environ. Pollut. 81, 229, 1993.
  • 6. YU H., HUANG G. H. Isolation and characterization of biosurfactant- and bioemulsifier-producing bacteria from petroleum contaminated sites in Western Canada. Soil Sediment Contaminat. Int. J. 274, 2011.
  • 7. HENRY N. D., ROBINSON L., JOHNSON E., CHERRIER J., ABAZINGE M. Phenanthrene emulsification and biodegradation using rhamnolipid biosurfactants and Acinetobacter calcoaceticus In Vitro. Bioremediat. J. 109, 2011.
  • 8. WALTER V., SYLDATK C., HAUSMANN R. Screening concepts for the isolation of biosurfactant producing microorganisms. Adv. Experiment. Med. Biol. 672, 1, 2010.
  • 9. GUDIÑA E.J., RANGARAJAN V., SEN R., RODRIGUES L.R. Potential therapeutic applications of biosurfactants. Trends Pharmacol. Sci. 34, 667, 2013.
  • 10. MAKKAR R.S., CAMEOTRA S.S. An update on the use of unconventional substrates for biosurfactant production and their new application. Appl. Microbiol. Biotechnol. 58, 428, 2002.
  • 11. PARTHIPAN P., PREETHAM E., MACHUCA L.L., RAHMAN P.K.S.M., MURUGAN L., RAJASEKAR A. Biosurfactant and degradative enzymes mediated crude oil degradation by bacterium Bacillus subtilis A1. Front. Microbiol. 8, 193, 2017.
  • 12. SINGH P., CAMEOTRA S.S. Potential applications of microbial surfactants in biomedical sciences. Trends Biotechnol. 22, 142, 2004.
  • 13. WHITTENBURY R., PHILLIPS K.C., WILKINSON J.F. Enrichment, isolation and some properties of methaneutilizing bacteria. J. Gen. Microbiol. 61, 205, 1970.
  • 14. WEISBURG W.G., BARNS S.M., PELLETIER D.A., LANE D.J. 16S ribosomal DNA amplification for phylogenetic study. J. Bacteriol. 173 (2), 697, 1991.
  • 15. TAMURA K., STECHER G., PETERSON D., FILIPSKI A., KUMAR S. MEGA6: Molecular Evolutionary Genetics Analysis version 6.0. Mol. Bio. Evol. 30, 2725, 2013.
  • 16. MORIKAWA M., DAIDO H., TAKAO T., MURATA S., SHIMONISHI Y., IMANAKA T. A new lipopeptide biosurfactant produced by Arthrobacter sp. strain MIS 38. J. Bacteriol. 175, 6459, 1993.
  • 17. OHNO A., ANO T., SHODA N. Production of antifungal peptide antibiotics iturin by Bacillus subtilis NB22 in solid state fermentation. J. Ferment. Bioeng. 75, 23, 1993.
  • 18. SIEGMUND I., WAGNER F. New method for detecting rhamnolipid excreted by Pseudomonas species during growth on mineral agar. Biotechnol. Tech. 5 (4), 265, 1991.
  • 19. BODOUR A.A., MILLER-MAIER R.M. Application of a modified drop-collapse technique for surfactant quantitation and screening of biosurfactant-producing microorganisms. J. Microbiol. Methods. 32, 273, 1998.
  • 20. COOPER D.G., GOLDENBERG B.G. Surface-active agents from two Bacillus species. Appl. Environ. Microbiol. 53, 224, 1987.
  • 21. OBUOTOR T.M., SAKARIYAU A.O., BADA B.S. Enhanced biodegradation of spent engine oil contaminated soil using organic wastes. Appl. Environ. Res. 38 (3), 27, 2016.
  • 22. SHAHAB S., SHAFI I., AHMED N. Indigenous oil degrading bacteria: isolation, screening and characterization. NJHS. 2, 100, 2017.
  • 23. ALVAREZ V.M., JURELEVICIUS D., MARQUES J.M., DE SOUZA P.M., DE ARAÚJO L.V., BARROS T.G., DE SOUZA R.O.M.A., FREIRE D.M.G., SELDIN L. Bacillus amyloliquefaciens TSB5O 3.8, a biosurfactant-producing strain with biotechnological potential for microbial enhanced oil recovery. J. Colloids Surf. B. 136, 14, 2015.
  • 24. PACWA-PLOCINICZAK M., PLAZA G.A., PIOTROWSKA-SEGET Z., CAMEOTRA S.S. Environmental applications of biosurfactants: recent advances. Int. J. Mol. Sci. 12, 633, 2011.
  • 25. SANTOS D., RUFINO R., LUNA J., SANTOS V. SARUBBO L. Biosurfactants: multifunctional biomolecules of the 21st century. Int. J. Mol. Sci. 17, 401, 2016.
  • 26. KUMAR R., BHARAGAVA R.N., KUMAR M., SINGH S.K., GOVIND K. Enhanced biodegradation of mobil oil hydrocarbons by biosurfactant producing bacterial consortium in wheat and mustard rhizosphere. J. Pet. Environ. Biotechnol. 4, 158, 2013.
  • 27. TAMBEKAR D.H., GODAKH P.V. Biochemical and molecular detection of biosurfactant producing bacteria from soil. Int. J. Life. Sci. Biotechnol. Pharma. Res. 2. 2013.
  • 28. BEZZA F.A., CHIRWA E.M.N. Production and applications of lipopeptide biosurfactant for bioremediation and oil recovery by Bacillus subtilis CN2. Biochem. Eng. J. 101, 168, 2015.
  • 29. GUDIÑA E.J., RODRIGUES A.I., ALVES E., DOMINGUES M.R., TEIXEIRA J.A., RODRIGUES L.R. Bioconversion of agro-industrial by-products in rhamnolipids toward applications in enhanced oil recovery and bioremediation. Bioresour. Technol. 177, 87, 2015.
  • 30. JADHAV M., KAGALKAR A., JADHAV S., GOVINDWAR S. Isolation, characterization, and antifungal application of a biosurfactant produced by Enterobacter sp. MS16. Eur. J. Lipid Sci. Technol. 113, 1347, 2011.
  • 31. SARAFZADEH P., HEZAVE A.Z., RAVANBAKHSH M., NIAZI A., AYATOLLAHI S. Enterobacter cloacae as biosurfactant producing bacterium: differentiating its effects on interfacial tension and wettability alteration mechanisms for oil recovery during MEOR process. Colloids Surf. B. Biointerfaces. 105, 223, 2013.
  • 32. SARAFZADEH P., NIAZI A., OBOODI V., RAVANBAKHSH M., HEZAVE A.Z., AYATOLLAHI S.S., RAEISSI S. Investigating the efficiency of MEOR processes using Enterobacter cloacae and Bacillus strearothermophilus SUCPM#14 (biosurfactant-producing strains) in carbonated reservoirs. J. Pet. Sci. Eng. 113, 46, 2014a.
  • 33. SARAFZADEH P, HEZAVE A.Z., MOHAMMADI S., NIAZI A., AYATOLLAHI S. Modification of rock/fluid and fluid/fluid interfaces during MEOR processes, using two biosurfactant producing strains of Bacillus stearothermophilus SUCPM#14 and Enterobacter cloacae: a mechanistic study. Colloids Surf. B. 117, 457, 2014b.
  • 34. WONG-VILLARREAL A., REYES-LÕPEZ L., GONZÃLEZ H.C., GONZÃLEZ C.B., YÁÑEZ-OCAMPO G. Characterization of bacteria isolation of bacteria from Pinyon rhizosphere producing biosurfactant from agroindustrial waste. Pol. J. Microbiol. 65 (2), 183, 2016.
  • 35. PACHECO G.J., CIAPINA E.M.P., DE BARROS GOMES E., JUNIOR N.P. Biosurfactant production by Rhodococcus erythropolis and its application to oil removal. Braz. J. Microbiol. 41, 685, 2010.
  • 36. SURYANTI V., HASTUTI S., ANDRIANI D. Optimization of biosurfactant production in soybean oil by Rhodococcus rhodochrous and its utilization in remediation of cadmium-contaminated solution. Mater. Sci. Eng. 107, 1, 2016.
  • 37. JAY S., RAHMAN P.K.S.M., SHARMA S. Biosurfactant production and concomitant hydrocarbon degradation potentials of bacteria isolated from extreme and hydrocarbon contaminated environment. Chem. Eng. J. 317, 232, 2017.
  • 38. SURYANTI V., HANDAYANI D. S., MASYKUR A., LINDASARI. Optimization production of biosurfactant by Pseudomonas putida using crude palm oil (CPO) as substrate. Earth. Environ. Sci. 75, 1, 2017.
  • 39. ZHANG J., XUE Q., GAO H., LAI H., WANG P. Production of lipopeptide biosurfactants by Bacillus atrophaeus 5-2a and their potential use in microbial enhanced oil recovery. Microb. Cell. Fact. 15 (168), 1, 2016.
  • 40. GAGELIDZE N.A., AMIRANASHVILI L.L., VARSIMASHVILI K.I., TINIKASHVILI L.M., TOLORDAVA L.L., SADUNISHVILI T.A. Selection of effective biosurfactant producers among Bacillus strains isolated from soils of Goergia. Ann. Agra. Sci. 14, 72, 2016.
  • 41. VARADAVENKATESAN T., MURTY V.R. Production of a lipopeptide biosurfactant by a novel Bacillus sp. and its applicability to enhanced oil recovery. Microbiol. 1, 2013.
  • 42. PÉREZ-ARMENDÁRIZ B., MAURICIO-GUTIÉRREZ A., JIMÉNEZ-SALGADO T., TAPIA-HERNÁNDEZ A., SANTIESTEBAN-LÓPEZ A. Emulsification of hydrocarbons using biosurfactant producing strains isolated from contaminated soil in Puebla, Mexico, Biodegradation - Engineering and Technology, Dr. Rolando Chamy (Ed.), InTech, DOI: 10.5772/56143. 2013.
  • 43. FONTES G.C., AMARAL P.F., NELE M., COELHO M.A. Factorial design to optimize biosurfactant production by Yarrowia lipolytica. J. Biomed. Biotechnol. 1, 2010.
  • 44. PACWA-PLOCINICZAK M., PLOCINIZAK T., IWAN J., ŻARSKA M., CHORĄŻEWSKI M.,DZIDA M., PIOTROWSKA-SEGET Z. Isolation of hydrocarbondegrading and biosurfactant-producing bacteria and assessment their plant growth-promoting traits. J. Environ. Manage. 168, 175, 2016.
  • 45. FAKRUDDIN M.D. Biosurfactant: production and application. J. Pet. Environ. Biotechnol. 3, 124, 2012.
Typ dokumentu
Identyfikator YADDA
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.