Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2017 | 26 | 2 |

Tytuł artykułu

How exogenous selenium affects anthocyanin accumulation and biosynthesis-related gene expression in purple lettuce

Warianty tytułu

Języki publikacji



We studied the effects of selenite on growth and anthocyanin accumulation in purple lettuce. The results will ascertain which selenite concentration is more advantageous to the purple lettuce and help study the effect of selenite on the molecular mechanism of plant anthocyanin accumulation using the quantitative reverse transcription polymerase chain reaction (qRT-PCR). In this study, the low selenite concentrations (≤ 8μM) could not only promote purple lettuce growth including plant height, leaf area (LA), and fresh weight (FW), but also the anthocyanin contents which may be due to how the selenite affects the UDP-glycose flavonoid glycosyl transferase (UFGT) and flavanone 3-hydroxylase (F3H) genes expression of anthocyanin biosynthesis. Next, on the basis of the obtained results from the preliminary experiments, 8 μM selenite was used to analyze the anthocyanin accumulation with the treatment time prolonged. Although the anthocyanin content of purple lettuce was not reduced on day 24, the control plants were significantly decreased. The reason may be that compared with the control plants, UFGT and F3H genes were markedly up-regulated on day 24. Therefore, the influence of selenium on anthocyanin accumulation and molecular regulation of anthocyanin synthesis is mainly due to the expression levels of the F3H and UFGT gene. It needs to be a further studied.

Słowa kluczowe








Opis fizyczny



  • College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
  • College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
  • College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
  • College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
  • College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
  • College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
  • College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
  • College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
  • College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China


  • 1. Harborne J.B., Williams C.A. Advances in flavonoid research since 1992. Phytochemistry. 55 (6), 481, 2000.
  • 2. Shipp J., Abdelaal E.M. Food applications and physiological effects of anthocyanins as functional food ingredients. Open Food Science Journal. 4 (1), 7, 2010.
  • 3. Allan A.C., Hellens R.P., Laing W.A. MYB transcription factors that colour our fruit. Trends in Plant Science. 13 (3), 99, 2008.
  • 4. Rowan D.D., Cao M., Lin-Wang K., Cooney J.M., Jensen D.J., Austin P.T. Environmental regulation of leaf colour in red 35S:PAP1 Arabidopsis thaliana. New Phytologist. 182 (1), 102, 2009.
  • 5. Rio D.D., Rodriguez-mateos A., Spencer J.P.E., Tognolini M., Borges G., Crozier A. Dietary (poly) phenolics in human health: structures, bioavailability, and evidence of protective effects against chronic diseases. Antioxidants & Redox Signaling. 18 (14), 1818, 2013.
  • 6. He J., Giusti M.M. Anthocyanins: natural colorants with health-promoting properties. Annual Review of Food Science & Technology. 1 (3), 163, 2010.
  • 7. Zhang J., Lazarenko O.P., Blackburn M.L., Badger T.M., Ronis M.J.J., Chen J.R. Blueberry consumption prevents loss of collagen in bone matrix and inhibits senescence pathways in osteoblastic cells. Age. 35 (3), 807, 2013.
  • 8. Nascimento L.B.S., Leal-Costa M.V., Coutinho M.A.S., Moreira N.D.S., Lage C.L.S., Barbi N.D.S. Increased Antioxidant Activity and Changes in Phenolic Profile of Kalanchoe pinnata, (Lamarck) Persoon (Crassulaceae) Specimens Grown Under Supplemental Blue Light. Photochemistry & Photobiology. 89 (2), 391, 2013.
  • 9. Zhang C., Jia H., Wu W., Wang X., Fang J., Wang C. Functional conservation analysis and expression modes of grape anthocyanin synthesis genes responsive to low temperature stress. Gene. 574 (1), 168, 2015.
  • 10. Jaakola L. New insights into the regulation of anthocyanin biosynthesis in fruits. Trends in Plant Science. 18 (9), 477, 2013.
  • 11. Larbat R., Olsen K.M., Slimestad R., Løvdal T., Bénard C., Verheul M. Influence of repeated shortterm nitrogen limitations on leaf phenolics metabolism in tomato. Phytochemistry. 77 (1), 119, 2012.
  • 12. Griesser M., Schwab W. Redirection of flavonoid biosynthesis through the down-regulation of an anthocyanidin glucosyltransferase in ripening strawberry fruit. Plant Physiology. 146 (4), 1528, 2008.
  • 13. Zhao Z.C., Hu G.B., Hu F.C. The UDP glucose: flavonoid-3-O-glucosyltransferase (UFGT) gene regulates anthocyanin biosynthesis in litchi (Litchi chinesis, Sonn.) during fruit coloration. Molecular Biology Reports. 39 (6), 6409, 2012.
  • 14. O′Dell B.L., Sunde R.A. Handbook of nutritionally essential mineral elements. Handbook of Nutritionally Essential Mineral Elements. 1997.
  • 15. L. Garciabanuelos M., A. Hermosillocereceres M., Sanchez E. The Importance of Selenium Biofortification in Food Crops. Current Nutrition & Food Science. 7 (3), 181, 2011.
  • 16. Hoagland D.R., Arnon D.I. The water-culture method for growing plants without soil. Calif.agric.exp.stn.circ. 347 (5406), 357, 1950.
  • 17. Hawrylak-Nowak B. Comparative effects of selenite and selenate on growth and selenium accumulation in lettuce plants under hydroponic conditions. Plant Growth Regulation. 70 (2), 149, 2013.
  • 18. Migaszewski Z.M. The Quality of Element Determinations in Plant Materials by Instrumental Methods. Polish Journal of Environmental Studies. 15 (2), 154, 2006.
  • 19. Giusti M.M., Wrolstad R.E. Characterization and Measurement of Anthocyanins by UV-Visible Spectroscopy. Current Protocols in Food Analytical Chemistry. 63, 2001.
  • 20. Livak K.J., Schmittgen T.D. Analysis of Relative Gene Expression Data Using Real-Time Quantitative PCR and the 2 −ΔΔ C T Method. Methods. 25 (4), 402, 2001.
  • 21. Germ M., Stibilj V., Kreft I., Germ M. Metabolic Importance of Selenium for Plants. 2007.
  • 22. Hamilton S.J. Review of selenium toxicity in the aquatic food chain. Science of the Total Environment. 326 (1-3), 1, 2004.
  • 23. Seppänen M.M., Kontturi J., Heras I.L., Madrid Y., Cámara C., Hartikainen H. Agronomic biofortification of Brassica with selenium - enrichment of SeMet and its identification in Brassica seeds and meal. Plant & Soil. 337 (1), 273, 2010.
  • 24. Chilimba A.D.C., Young S.D., Black C.R., Meacham M.C., Lammel J., Broadley M.R. Agronomic biofortification of maize with selenium (Se) in Malawi. Field Crops Research. 125 (1), 118, 2012.
  • 25. Esringu A., Usta S., Dursun A., Ercisli S., Yildirim E. Selenium supplementation affects the growth, yield and selenium accumulation in lettuce (Lactuca sativa L.). Comptes rendus de l’Académie bulgare des Sciences. 68 (6), 801, 2015.
  • 26. Liu Y., Che F., Wang L., Meng R., Zhang X., Zhao Z. Fruit coloration and anthocyanin biosynthesis after bag removal in non-red and red apples (Malus × domestica Borkh.). Molecules. 18 (2), 1549, 2013.
  • 27. Soubeyrand E., Basteau C., Hilbert G., Leeuwen C.V., Delrot S., Gomès E. Nitrogen supply affects anthocyanin biosynthetic and regulatory genes in grapevine cv. Cabernet-Sauvignon berries. Phytochemistry. 103, 38, 2014.
  • 28. Aguilar-Barragán A., Ochoa-Alejo N. Virus-induced silencing of MYB, and WD40, transcription factor genes affects the accumulation of anthocyanins in chilli pepper fruit. Biologia Plantarum. 58 (3), 567 , 2014.
  • 29. Ramsay N.A., Glover B.J. MYB–bHLH–WD40 protein complex and the evolution of cellular diversity. Trends in Plant Science. 10 (2), 63, 2005.
  • 30. Yin J.M., Yan R.X., Zhang P.T., Han X.Y., Wang L. Anthocyanin accumulation rate and the biosynthesis related gene expression in Dioscorea alata. Biologia Plantarum. 59 (2), 67, 2015.
  • 31. Povero G., Gonzali S., Bassolino L., Mazzucato A., Perata P. Transcriptional analysis in high-anthocyanin tomatoes reveals synergistic effect of Aft, and atv, genes. Journal of Plant Physiology. 168 (3), 270, 2011.
  • 32. Tsuda T., Yamaguchi M., Honda C., Moriguchi T. Expression of anthocyanin biosynthesis genes in the skin of peach and nectarine fruit. Journal of the American Society for Horticultural Science American Society for Horticultural Science. 129 (6), 857, 2004.

Typ dokumentu



Identyfikator YADDA

JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.