PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2012 | 11 | 3 |

Tytuł artykułu

The effect of nitrogen and potassium on N-NH4 and N-NO3 accumulation and nutrient contents in rocket (Eruca sativa MILL.) leaves

Treść / Zawartość

Warianty tytułu

PL
Oddziaływanie azotu i potasu na gromadzenie się N-NH4 i N-NO3 oraz składników pokarmowych w liściach rokietty (Eruca sativa MILL.)

Języki publikacji

EN

Abstrakty

EN
Fertilization of horticultural plants significantly contributes to increased yield but also affects yield quality. Nitrogen, potassium, and sulphur, which belong to the main macronutrients, can have a large effect on the chemical composition of edible parts of plants. The aim of the present study was to determine the effect of the rate of nitrogen as well as of the rate and form of potassium on the accumulation of dry matter, N-NH₄, N-NO₃, Fe, Zn, Mn, and Cu in the leaves of garden rocket grown in a greenhouse during the spring period. These macronutrients were applied at the following rates (in g . dm⁻³ of medium): 0.3 and 0.6 N in the form of Ca(NO₃)2; 0.3, 0.6, and 0.9 K in the form of K₂SO₄ and KCl; 0.4 P; 0.2 Mg; as well as the following micronutrients (in mg · dm⁻³ of medium): 8.0 Fe (EDTA); 5.1 Mn (MnSO₄ · H₂O), 13.3 Cu (CuSO₄ · 5H₂O), 0.74 Zn (ZnSO₄ · ₇H₂O), 1.6 B (H₃BO₃); 3.7 Mo (NH₄)₆Mo₇O₂₄ · 4H₂O). The increased rates of nitrogen and potassium caused significant changes in dry weight (DW) of rocket plants; its higher proportion was found when the lower rate of N was applied, compared to the higher rate. The increased rate of N increased the content of N-NH₄ and N-NO₃, whereas the rising amount of K in the medium resulted in a decrease in the amount of N-NO₃ in the plant material studied. Plants fertilized with the lower rate of nitrogen accumulated more iron and zinc as well as less manganese than plants that received more of this nutrient. Plants fed with the highest rate of K accumulated the largest amount of iron, while the largest amount of manganese was found in plants that received the lowest amount of this nutrient. The application of K₂SO₄, as a source of potassium, contributed to an increased accumulation of iron, whereas the application of KCl resulted in an increased concentration of manganese in rocket leaves.
PL
Nawożenie roślin ogrodniczych przyczynia się w znacznym stopniu do zwiększenia wielkości plonu, ale ma wpływ również na jego jakość. Azot, potas i siarka, należące do głównych makroskładników mogą w dużym stopniu wpływać na skład chemiczny części jadalnych warzyw. Celem przedstawionych badań było określenie wpływu dawki azotu oraz dawki i postaci potasu na gromadzenie suchej masy, N-NH₄, N-NO₃, Fe, Zn, Mn i Cu w liściach rokietty siewnej, uprawianej w szklarni w okresie wiosennym. Zastosowano (w g · dm⁻³ podłoża): 0,3 i 0,6 N w formie Ca(NO₃)2; 0,3, 0,6 i 0,9 K w postaci K₂SO₄ oraz KCl; 0,4 P; 0,2 Mg oraz mikroelementy (w mg · dm⁻³ podłoża): 8,0 Fe (EDTA); 5,1 Mn (MnSO₄ · H₂O); 13,3 Cu (CuSO₄ · 5H₂O); 0,74 Zn (ZnSO₄ · ₇H₂O); 1,6 B (H₃BO₃); 3,7 Mo (NH₄)₆Mo₇O₂₄ · 4H₂O). Zwiększenie dawki azotu oraz potasu powodowało istotne zmiany suchej masy (DW) roślin rokietty, a większy jej udział stwierdzono przy mniejszej dawce N niż przy większej. Zwiększenie dawki N zwiększyło zawartość N-NH₄ i N-NO₃, a wzrastająca ilość K w podłożu powodowała zmniejszenie ilości N-NO₃ w badanym materiale roślinnym. Rośliny żywione mniejszą dawka azotu gromadziły więcej żelaza i cynku oraz mniej manganu niż rośliny otrzymujące więcej tego składnika. Najwięcej żelaza gromadziły rośliny żywione najwyższą dawką K, natomiast najwięcej manganu stwierdzono u roślin, które otrzymywały najmniej tego składnika. Aplikacja K₂SO₄ jako źródła potasu, przyczyniła się do zwiększonej kumulacji żelaza, natomiast zastosowanie KCl powodowało zwiększoną koncentrację manganu w liściach rokietty.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

11

Numer

3

Opis fizyczny

p.211-221,ref.

Twórcy

  • Department of Vegetable Crops and Medicinal Plants, University of Life Sciences in Lublin, Leszczynskiego 58, 20-068 Lublin, Poland
autor
autor
autor

Bibliografia

  • Ali A.A., Ikeda M., Hamada Y., 1985. Absorption, translocation and assimilation of ammonium and nitrate nitrogen in rice plats as affected by the supply of potassium, calcium and magnesium. J. Fac. Agric., Kyushu Univ., 30, 2–3, 113–124.
  • Asare E., Scarisbrick D.H., 1995. Rate of nitrogen and sulphur fertilizers on yield, yield components and seed quality of oilseed rape (Brassica napus L.). Field Crops Res., 44, 41–46.
  • Biesiada A., Kolota E., 2010. The effect of nitrogen fertilization on yielding and chemical composition of radicchio chicory for autumn-harvest cultivation. Acta Sci. Pol., Hortorum Cultus, 9 (4), 85–91.
  • Borowski E., Nurzyński J., Michałojć Z., 2000. Reaction of glasshouse tomato to potassium chloride or sulphate fertilization on various substrates. Annales UMCS, EEE, Horticultura, VIII, 1–9.
  • Carvalho Neto J.P., de Barros Silva E., Campos Santana R., Grazziotti P.H., 2011. Effect of NPK fertilization on production and leaf nutrient content of eucalyptus minicuttings in nutrient solution. R. Bras. Ci. Solo, 35, 249–254.
  • Ceylan O., Mordogan N., Cakici H., Yioldas F., 2002. Effects of different nitrogen levels on the yield and nitrogen accumulation in the rocket. Asian J. Plant Sci., 1, 4, 482–483.
  • Chen B.M., Wang Z.H., Li S.X., Wang G.X., Song H.X., Wang X.N., 2004. Effects of nitrate supply on plant growth, nitrate accumulation, metabolic concentration and nitrate reductase activity in three leafy vegetables. Plant Sci., 167, 635–643.
  • Cil N., Katkat A.V., 1995. Nitrogen fertilizer types and effects on their excess amount on yield, nitrate and mineral composition of spinach. Ilhan Akalan Soil Environment Symp., Turkey, II, 7, 156–168.
  • De Pascale S., Maggio A., Pernice R., Fogliano V., Barbieri G., 2007. Sulphur fertilization may improve the nutritional value of Brassica rapa L. subsp. sylvestris. Europ. J. Agronomy, 26, 418–424.
  • Dzida K., Pitura K., 2008. The influence of varied nitrogen fertilization on yield and chemical composition of swiss chard (Beta vulgaris L. var. cicla L.). Acta Sci. Pol., Hortorum Cultus, 7 (3), 15–24.
  • Dzida K., Jarosz Z., Michałojć Z., 2011. The effect of diversified potassium fertilization on the field and chemical composition of Beta vulgaris L. var. cicla L. Acta Sci. Pol., Hortorum Cultus, 10 (4), 263–274.
  • Elia A., Santamaria P., Serio F., 1999. Nitrogen nutrition, yield and quality of spinach. J. Sci. Food Agric., 76 (3), 341–346.
  • Fazli I.S., Abdin M.Z., Jamal A., Ahmad S., 2005. Interactive effect of sulphur and nitrogen on lipid accumulation, acetyl-CoA concentration and acetyl-CoA carboxylase activity in developing seeds of oilseed crops (Brassica campestris L. and Eruca sativa Mill.). Plant Sci., 168, 29–36.
  • Fazli I.S., Jamal A., Ahmad S., Masoodi M., Khan J.S., Abdin M.Z., 2008. Interactive effect of sulphur and nitrogen on nitrogen accumulation and harvest in oilseed crops differing in nitrogen assimilation potential. J. Plant. Nutr., 31, 7, 1203–1220.
  • Ferrante A., Incrocci L., Maggini R., Tognoni F., Serra G., 2003. Preharvest and postharvest strategies for reducing nitrate content in rocket (Eruca sativa). Acta Hort., 628, 153–159.
  • Golcz A., Kujawski P., Zimowska H., 2004. Effect of potassium fertilizer type on the content of nutritive components in the leaves and fruits of hot pepper (Capsicum anuum L.). Rocz. AR Pozn. 356, Ogrodnictwo, 37, 75–80.
  • Gülser F., 2005. Effects of ammonium sulphate and urea on NO₃ Ā and NO2 Ā accumulation, nutrient contents and yield criteria in spinach. Sci. Hort., 106, 330–340.
  • Hanafy Ahmed A.H., Kheir A.H., Talaat N.B., 1997. Physiological studies on reducing the accumulation of nitrate in jew’s mallow (Corchorus olitorus) and radish (Raphanus sativus) plants. Bull. Fac. Agric., Univ. Cairo, 48, 25–64.
  • Hanafy Ahmed A.H., Khalil M.K., Farrag Amal M., 2000. Nitrate accumulation, growth, yield and chemical composition of rocket (Eruca vesicaria subsp. sativa) plants as affected by NPK fertilization, kinetin and salicylic acid. ICEHM Cairo Univ., Egypt, 495–508.
  • Marschner H., 1995. Functions of mineral nutrients: Macronutrients: sulphur. In: Mineral nutrition of higher plant, second ed. Academic Press, Cambridge, UK, 255–265.
  • Nadasy E., 2002. effect of nutrition on nitrate dynamics of green pea. Acta Biol. Szeged., 46, 3–4, 205–206.
  • Nicola S., Hoeberechts J., Fontana E., Saglietti D., 2003. Cultural technique influences on postharvest quality of rocket (Eruca sativa Mill.). Quality in Chains, Wageningen, www.agroselviter.unito.it/hortsci/Poster/2003QUI.
  • Nowacki E., 1980. Gospodarka azotowa roślin uprawnych. PWRiL, Warszawa.
  • Nurzyńska-Wierdak R., 2001. Yielding of garden rocket (Eruca sativa) in dependence on differentiated nitrogen fertilization. VCRB, 54, 71–76.
  • Nurzyńska-Wierdak R., 2006a. Plon oraz skład chemiczny liści rokietty i kalarepy w zaleĪności od nawoĪenia azotowo-potasowego. Rozp. Nauk., WAR Lublin.
  • Nurzyńska-Wierdak R., 2006b. The effect of nitrogen fertilization on yield and chemical composition of garden rocket (Eruca sativa Mill.) leaves in autumn cultivation. Acta Sci. Pol., Hortorum Cultus, 5 (1), 53–63.
  • Nurzyńska-Wierdak R., 2009. Growth and yield of garden rocket (Eruca sativa Mill.) affected by nitrogen and potassium fertilization. Acta Sci. Pol., Hortorum Cultus, 8 (4), 23–33.
  • Nurzyńska-Wierdak R., RoĪek E., Borowski B., 2011. Response of different basil cultivars to nitrogen and potassium fertilization: total and mineral nitrogen content in herb. Acta Sci. Pol., Hortorum Cultus, 10 (4), 217–232.
  • Nurzyńska-Wierdak R., Dzida K., RoĪek E., Jarosz Z., 2012. Effects of nitrogen and potassium fertilization on growth, yield and chemical composition of garden rocket. Acta Sci. Pol., Hortorum Cultus, 11 (2), 289–300.
  • Nurzyński J., Uziak Z., Mokrzecka E., 1980. Effects of various kinds of potassium fertilizers on the yield and quality of greenhouse tomatoes. Acta Agrobot., 33, 2, 197–203.
  • Omirou M., Papadopoulou K.K, Papasylianou I., Constantinou M., Karpouzas D.G., Asimakopoulos, Ehaliotis C., 2009. Impact of nitrogen and sulphur fertilization on the composition of glucosinolates in relation to sulfur assimilation in different plant organs of broccoli. J. Agric. Food Chem., 57 (20), 9408–9417.
  • Omirou M., Papastefanou Ch., Katsarou D., Papasylianou I., Passam H.C., Haliotis C., Papadopoulou K.K., 2011. Relationship between nitrogen, dry matter accumulation and glucosinolates in Eruca sativa Mills. The applicability of the critical NO₃-N levels approach. Plant Soil, (in press).
  • Salvagiotti F., Miralles D.J., 2008. Radiation interception, biomass production and grain yields as affected by the interaction of nitrogen and sulfur fertilization in wheat. Europ. J. Agronomy, 28, 282–290.
  • Santamaria P., Elia A., Gonella M., Serio F., 1997. Effects of two levels and two NH₄ + : NO₃ - ratios on endive (Cichorium endyvia L. var. crispurm Heigi). I. Growth, yield and water use. Adv. Hort. Sci., 11, 1, 41–46.
  • Santamaria P., Elia A., Papa G., Serio F., 1998a. Nitrate and ammonium nutrition in chicory and rocket salad plants. J. Plant Nutr., 21, 9, 1779–1789.
  • Santamaria P., Elia A., Parente A., Serio F., 1998b. Fertilization strategies for lowering nitrate content in leafy vegetables: chicory and rocket salad cases. J. Plant Nutr., 21, 9, 1791–1803.
  • Santamaria P., Elia A., Serio F., 2002. Effect of solution nitrogen concentration on yield, leaf element content, and water and nitrogen use efficiency of three hydroponically-grown rocket salad genotypes. J. Plant Nutr., 25, 2, 245–258.
  • Scherer H.W., 2001. Sulphur in crop production – invited paper. Europ. J. Agronomy, 14, 81–111.
  • Schnug E., Haneklaus S., 1994. Sulphur deficiency in Brassica napus. Landb.-Forsch. Völkenrode, Fal. Braunschweig, 144, 31.
  • Shaheen A.M., Fatma A., Rizk A.M., Elbassiony A.M., El-Shal Z.S.A., 2007. Effect of ammonium sulphate and agricultural sulphur on the artichoke plant growth, heads yield and its some physical and chemical properties. Res. J. Agric. Bio. Sci., 3 (2), 82–90.
  • Silva S.M., Oliveira L.J., Faria F.P., Reis E.F., Carneiro M.A.C., Silva S.M., 2011. Atividade da enzima nitrato reductase em milho cultivado sob diferentes niveis de adubacao nitrogenada e potassica. Ciencia Rural, Santa Maria, 41, 11, 1931–1937.
  • Sirguey C., Schwartz Ch., Morel J.L., 2006. Response of Thlapsi caerulescens to nitrogen, phosphorus and sulfur fertilisation. Int. J. Phytoremediat., 8, 149–161.
  • Smatanova M., Richter R., Hlusek J., 2004. Spinach and pepper response to nitrogen and sulphur fertilization. Plant Soil Environ., 50 (7), 303–308.
  • Wang Z., Li S., 2004. Effects of nitrogen and phosphorus fertilization on plant growth and nitrate accumulation in vegetables. J. Plant Nutr., 27, 3, 539–556.
  • Wu J.T., Wang Y.P., 1995. Effects of some environmental factors on nitrate content in Chinese cabbage (Brassica chinensis L.). Chin. Agri. Chem. Soc. J., 33, 2, 125–133.
  • Zhong N.W., Song Z.Y., Yong L.X., 1997. The effect of different K sources on yield and quality of some vegetable crops. Acta Agric. Zhejiangesis, 9, 3, 143–148.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-666bc9f0-3ef0-4b32-b46e-df6c9d951e94
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.