PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2019 | 28 | 4 |

Tytuł artykułu

A new approach for investigating the impact of pesticides and nutrient flux from agricultural holdings and land-use structures on Baltic Sea coastal waters

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Knowledge related to land-use management impacts on the Baltic Sea ecosystem is limited. The constant release of pollutants into water bodies has resulted in water quality degradation. Therefore, only the innovative approaches integrated with research will provide accurate solutions and methods for proper environment management and will enable understanding and prediction of the impacts of land-use in the Baltic Sea region. Modelling approaches have become essential to address water issues and to evaluate ecosystem management. There are many water quality models, but only a few work in the operational mode and only some of them can be used as an interactive tool for environmental management to assess the impact of pollution on water quality. This study presents a new approach for investigating the influence of pesticides and nutrient fluxes from agricultural holdings and land-usestructures on coastal waters of the Baltic Sea. Called WaterPUCK, this method will enable calculation of the sufficient amount of fertilizers, investigation nutrients, and pesticide sources and model: the fate and distribution of nutrients and pesticides in the surface water and groundwater; loads of pollution to surface water and groundwater; fluxes of nutrients via submarine groundwater discharge (SGD) to the Baltic Sea coastal environment; the processes and mechanisms influencing the persistence of nutrients in the environment; and predict the changes in land use and climate change influence on the Bay of Puck ecosystem.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

28

Numer

4

Opis fizyczny

p.2531-2539,fig.,ref.

Twórcy

  • Physical Oceanography Department, Institute of Oceanology, Polish Academy of Sciences, Sopot, Poland
autor
  • Physical Oceanography Department, Institute of Oceanology, Polish Academy of Sciences, Sopot, Poland
autor
  • Physical Oceanography Department, Institute of Oceanology, Polish Academy of Sciences, Sopot, Poland
  • Marine Chemistry and Biochemistry Department, Institute of Oceanology, Polish Academy of Sciences, Sopot, Poland
  • Faculty of Civil and Environmental Engineering, Gdansk University of Technology, Gdansk, Poland
  • Faculty of Civil and Environmental Engineering, Gdansk University of Technology, Gdansk, Poland
autor
  • Faculty of Civil and Environmental Engineering, Gdansk University of Technology, Gdansk, Poland
autor
  • Department of Water Quality, Institute of Technology and Life Sciences, Raszyn, Poland
  • Department of Environment Protection, Maritime Institute in Gdansk, Gdansk, Poland
  • Faculty of Civil and Environmental Engineering, Gdansk University of Technology, Gdansk, Poland
autor
  • Physical Oceanography Department, Institute of Oceanology, Polish Academy of Sciences, Sopot, Poland
  • Marine Chemistry and Biochemistry Department, Institute of Oceanology, Polish Academy of Sciences, Sopot, Poland
  • Faculty of Civil and Environmental Engineering, Gdansk University of Technology, Gdansk, Poland
  • Department of Environment Protection, Maritime Institute in Gdansk, Gdansk, Poland
  • IT Department, Institute of Oceanology, Polish Academy of Sciences, Sopot, Poland
  • Academic Computer Centre in Gdansk, Gdansk, Poland
  • Municipality of Puck, Puck, Poland

Bibliografia

  • 1. NEUMANN T. Towards a 3D-ecosystem model of the Baltic Sea. J. Mar. Sys., 25, 405, 2000.
  • 2. EMELYANOV E. Baltic Sea: geology, geochemistry, paleoceanography, pollution. Shishov Inst. Oceanol. Russ. Acad. Sci., Kaliningrad, Russia, 1995.
  • 3. LEHTONEN K.K., BIGNERT A., BRADSHAW C., BROEG K., SCHIEDEK D. Chemical Pollution and ecotoxicology. Biol. Oceanog. Balt. Sea. Springer, Dordrecht, 547, 2017.
  • 4. BURNETT W.C., AGGARWAL P.K., AURELI A., BOKUNIEWICZ H., CABLE J.E., CHARETTE M.A., KONTAR E., KRUPA S., KULKARNI K.M., LOVELESS A., MOORE W.S., OBERDORFER J.A., OLIVEIRA J., OZYURT N., POVINEC P., PRIVITERA A.M.G., RAJAR R.AMESSUR R.T., SCHOLTEN J., STIEGLITZ T., TANIGUCHI M., TURNER J. V. Quantifying submarine groundwater discharge in the coastal zone via multiple methods. Sci. Total Environ. 367 (2-3), 498, 2006.
  • 5. SZYMCZYCHA B., VOGLER S., PEMPKOWIAK J. Nutrient fluxes via submarine groundwater discharge to the Bay of Puck, southern Baltic Sea. Sci. Total Environ. 438, 86, 2012.
  • 6. SZYMCZYCHA B., MACIEJEWSKA A., WINOGRADOW A., PEMPKOWIAK J. Could submarine groundwater discharge be a significant carbon source to the southern Baltic Sea? Oceanologia 56 (2), 327, 2014.
  • 7. SZYMCZYCHA B., PEMPKOWIAK J. The Role of Submarine Groundwater Discharge as Material Source to the Baltic Sea. GeoPlanet: Earth Planet. Sci. Book Ser., Springer, 2015.
  • 8. SZYMCZYCHA B., KROEGER K.D., PEMPKOWIAK J. Significance of groundwater discharge along the coast of Poland as a source of dissolved metals to the southern Baltic Sea. Mar. Pollut. Bull. 109, 151, 2016.
  • 9. DONIS D., JANSSEN F., LIU B., WENZHÖFER F., DELLWIG O., ESCHER P., SPITZY A., BÖTTCHER M. E. Biogeochemical impact of submarine groundwater discharge on coastal surface sands of the southern Baltic Sea. Estuar., Coast. Shelf Sci. 189, 131, 2017.
  • 10. CONLEY D.J., CARSTENSEN J., AIGARS J., AXE P., BONSDORFF E., EREMINA T., HAAHTI B.M., HUMBORG C., JONSSON P., KOTTA J., LÄNNEGREN C., LARSSON U., MAXIMOV A., MEDINA M.R., ŁYSIAK-PASTUSZAK E., REMEIKAITÈ-NIKIENÈ N., WALVE J., WILHELMS S., ZILLÈN L. Hypoxia is increasing in the coastal zone of the baltic sea. Environ. Sci. Technol. 45, 2011.
  • 11. HELCOM BSEP No. 100, Nutrient Pollution to the Baltic Sea in 2000, 2000.
  • 12. HELCOM BSEP No. 115B, Eutrophication in the Baltic Sea An integrated thematic assessment of the effects of nutrient enrichment in the Baltic Sea region, 2007.
  • 13. SZEFER P., FRELEK K., SZEFER K., LEE C., KIM B. S., WARZOCHA J., ZDROJEWSKA I., CIESIELSKI T. Distribution and relationships of trace metals in soft tissue, byssus and shells of Mytilus edulis trossulus from the southern Baltic. Environ. Pollut. 120, 423, 2002.
  • 14. CONAN C., BOURAOUI F., TURPIN N., de MARSILY G., BIDOGLIO G. Modeling flow and nitrate fate at catchment scale in Brittany (France). J. Environ. Qual. 32, 2026, 2003.
  • 15. SINGH V.P., FREVERT D.K. Watershed Models. CPR Press Taylor & Francis Group, Boca Raton USA, 678, 2005.
  • 16. OZGA-ZIELIFSKA, M., BRZEZIFSKI J. Applied Hydrology, 2nd ed.; Polish Scientific Publishers, Warsaw, 1997 [In Polish].
  • 17. JOHNSON B.E., JULIEN P.Y. The two-dimensional upland erosion model CASC2D-SED. In The Hydrology-Geomorphology Interface: Rainfall, Floods, Sedimentation, Land use, IAHS Proceedings & Reports, Jerusalem, 261, 107, 2000.
  • 18. JULIEN P.Y., SAGHAFIAN B., OGDEN F.L. Raster-Based Hydrologic Modeling of Spatially-Varied Surface Runoff. J. Amer. Water Res. Assoc. 31 (3), 523, 1995.
  • 19. ROJAS R., JULIEN P., JOHNSON B. CASC2D-SED v 1.0 – A 2-Dimensional Rainfall-Runoff and Sediment Model, Colorado State University, Colorado, 146, 2003.
  • 20. SINGH V.P., FREVERT D.K. Mathematical models of small watershed hydrology and applications. Water Resources Publication LLC, USA, 972, 2002.
  • 21. ADU J.T, KUMARASAMY M.V. Assessing Non-Point Source Pollution Models a Review. Pol. J. Environ. Stud. 27 (5), 1913, 2018.
  • 22. GUSTAFSSON B. G. A time-dependent coupled-basin model of the Baltic Sea. C47, Earth Sciences Centre, Göteborg University, Göteborg, pp.61, 2003.
  • 23. SAVCHUK O.P. Nutrient biogeochemical cycles in the Gulf of Riga: scaling up field studies with a mathematical model. J. Mar. Sys. 32, 253, 2002.
  • 24. NEUMANN T., FENNEL W., KREMP Ch. Experimental Simulations with an Ecosystem Model of the Baltic Sea: A Nutrient Load Reduction Experiment. Glob. Biogeochem. Cycles 16 (3), 7, 2002.
  • 25. EILOLA K., MEIER H.E.M., ALMROTH E. On the dynamics of oxygen, phosphorus and cyanobacteria in the Baltic Sea, A model study. J. Mar. Sys. 75, 163, 2009.
  • 26. MEIER H.E.M., KAUKER F. Modeling decadal variability of the Baltic Sea: 2. Role of freshwater inflow and largescale atmospheric circulation for salinity. J. Geophys. Res. 108 (C11), 3368, 2003.
  • 27. DZIERZBICKA-GŁOWACKA L., JAKACKI J.. JANECKI M., NOWICKI A. Activation of the operational ecohydrodynamic model (3D CEMBS) - the hydrodynamic part. Oceanologia 55 (3), 519, 2013a.
  • 28. DZIERZBICKA-GŁOWACKA L., JANECKI M. NOWICKI A., JAKACKI J. Activation of the operational ecohydrodynamic model (3D CEMBS) - the ecosystem module. Oceanologia 55 (3), 543, 2013b.
  • 29. KORZENIEWSKI K. Klimat Zatoki i jej zlewiska: Zatoka Pucka. Fund. Roz. Univ. Gda., Gdańsk, Poland, 1993.
  • 30. WĘSŁAWSKI J.M., KRYLA-STRASZEWSKA L., PIWOWARCZYK J., URBANSKI J., WARZOCHA J., KOTWICKI L., WŁODARSKA-KOWALCZUK M., WIKTOR J. Habitat model ling limitations - Puck Bay Baltic Sea-a case study. Oceanologia 55 (1), 167, 2013.
  • 31. NEITSCH S.L., ARNOLD J.G, KINIRY J.R., WILLIAMS J.R. Soil and Water Assessment Tool: Theoretical documentation. Version 2005. Temple, Texas.: USDA-ARS Grassland. Soil Water Res. Lab. 2005.
  • 32. BRZOZOWSKI J., MIATKOWSKI Z., ŚLIWINSKI D., SMARZYNSKA K., ŚMIETANKA M. Application of SWAT model to small agricultural catchment in Poland. J. Water Land Dev. 15, 157, 2011.
  • 33. GASSMAN P.W., SADEGHI A.M., SRINIVASAN R. Applications of the SWAT Model Special Section: Overview and Insights. J. Environ. Qual. 43 (1), 1, 2014.
  • 34. BRESSIANI D. de A., GASSMAN P.W., FERNANDES J.G., GARBOSSA L.H.P., SRINIVASAN R., BONUMÁ N.B., MENDIONDO E.M. A review of soil and water assessment tool (SWAT) applications in Brazil: Challenges and prospects. Inter. J. Agricul. Biolog. Eng. 8, 1, 2015.
  • 35. TAYLOR S.D., HE Y., HISCOCK K.M. Modelling the impacts of agricultural management practices on river water quality in Eastern England. J. Environ. Manage. 80, 147, 2016.
  • 36. ZIMA P. Numerical Simulations and Tracer Studies as a Tool to Support Water Circulation Modeling in Breeding Reservoirs. Arch. Hydro-Eng. Environ. Mech. 61 (3-4), 217, 2014
  • 37. JAWORSKA-SZULC B. Groundwater flow modelling of multi-aquifer systems for regional resources evaluation: The Gdansk hydrogeological system, Poland. Hydrogeol. J. 17, 1521, 2009.
  • 38. NOWICKI A., RAK D., JANECKI M., DZIERZBICKAGŁOWACKA L. Accuracy assessment of temperature and salinity computed by the 3D Coupled Ecosystem Model of the Baltic Sea (3D CEMBS) in the Southern Baltic. J. Oper. Oceanog. 9 (1), 67, 2016.
  • 39. NOWICKI A., DZIERZBICKA-GŁOWACKA L., JANECKI M., KAŁAS M. Assimilation of satellite SST data in the 3D CEMBS model. Oceanologia 57 (1), 17, 2015.
  • 40. PIETRZAK S. Sporządzanie bilansów składników nawozowych metodą „u bramy gospodarstwa”. Inst. Technol. Life Sci., Falenty, Poland. 2013 [in Polish].
  • 41. KANA T.M., DARKANGELO O., HUNT M.D., OLDHAM B., BENNET G..E, CORNWELL J.C. A membrane inlet mass spectrometer for rapid high precision determination of N2, O2, and Ar in environmental water samples. Anal. Chem., 66, 4166, 1994.
  • 42. ŚMIETANKA M. The influence of permanent grasslands on nitrate nitrogen loads in modelling approach. J. Water Land Dev. 21, 63, 2014

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-664cd1ab-6d30-4bc6-a293-6acee0e5209b
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.