PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2009 | 31 | 1 |
Tytuł artykułu

The EPSPS gene flow from glyphosate-resistant Brassica napus to untransgene B. napus and wild relative species Orychophragmus violaceus

Autorzy
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Gene flow from transgenic plants to compatible wild relatives is one of the major impediments to the development of the culture of genetically engineered crop plants. In this work, the flow of EPSPS (conferring resistance to glyphosate) gene of transgene Brassica napus toward the untransgene B. napus and wild relative species Orychophragmus violaceus in an open field (1 ha) was studied. The data related to only the 2004 and 2005 autumn season on one location of southwest of China. Pollen dispersal and fertilization of the target plants were favored and a detailed analysis of the hybrid offspring was performed. In field, the data studied show that the gene flow frequency was 0.16% between GM and non-GM B. napus at a distance of 1 m from the transgenic donor area. The crosspollination frequency was 0.05% between GM and non-GM B. napus at a distance of 5 m from the transgenic donor area. At a distance of 10 m, no crosspollination was observed. According to the results of this study, B. napus transgene flow was low. However, the wild relative species O. violaceus could not be fertilized by the transgenic pollen of B. napus, no matter what the distance was.
Słowa kluczowe
EN
Wydawca
-
Rocznik
Tom
31
Numer
1
Opis fizyczny
p.119-124,fig.,ref.
Twórcy
autor
  • Plant Genomics Research Center, Mianyang Normal College, 621000 Mianyang, Sichuan, China
autor
  • Plant Genomics Research Center, Mianyang Normal College, 621000 Mianyang, Sichuan, China
autor
  • Key Laboratory for Nuclear Waste Treatment and Environmental Safety (SWUST), Commission of Science, Technology and Industry for National Defence, Southwest University of Science and Technology, 621000 Mianyang, Sichuan, China
autor
  • Plant Genomics Research Center, Mianyang Normal College, 621000 Mianyang, Sichuan, China
  • Key Laboratory for Nuclear Waste Treatment and Environmental Safety (SWUST), Commission of Science, Technology and Industry for National Defence, Southwest University of Science and Technology, 621000 Mianyang, Sichuan, China
Bibliografia
  • Alibert B, Sellier H, Souvré A (2005) A combined method to study gene flow from cultivated sugar beet to ruderal beets in the glasshouse and open field. Eur J Agron 23(2):195–208
  • Amand PCS, Skinner DZ, Peaden RN (2000) Risk of alfalfa transgene dissemination and scale-dependent effects. Theor Appl Genet 101:10–114. doi:10.1007/s001220051457
  • Barber S (1999) Transgenic plants: field testing and commercialization including a consideration of novel herbicide resistance rape (Brassica napus L.). In: Lutman PLW (ed) Gene flow and agriculture relevance for transgenic crops. Major Design and Production, Nottingham, pp 3–12
  • Champion GT, May MJ, Bennet S, Brooks DR, Clark SJ, Daniels RE et al (2003) Crop management and agronomic context of the Farm Scale Evaluations of genetically modified herbicidetolerant crops. Philos Trans R Soc Lond B Biol Sci 358:1801–1818. doi:10.1098/rstb.2003.1405
  • Chèvre AM, Ammitzbøll H, Breckling B, Dietz-Pfeilstetter A, Frédérique E, Fargue A et al (2004) A review on interspecific gene flow from oilseed rape to wild relatives. In: Nijs H, Bartsch D, Sweet J (eds) Introgression from genetically modified plants into wild relatives. CABI publishing, UK, pp 235–251
  • Crawley MJ, Brown SL, Hails RS, Kohn DD, Rees M (2001) Transgenic crops in natural habitats. Nature 409:682–683. doi: 10.1038/35055621
  • Doyle JJ, Doyle JL (1990) Isolation of plant DNA from fresh tissue. Focus 12:13–15
  • Ellstrand NC (2001) When transgenes wander, should we worry? Plant Physiol 125:1543–1545. doi:10.1104/pp.125.4.1543
  • Ellstrand NC, Prentice HC, Hancock JF (1999) Gene flow and introgression from domesticated plants into their wild relatives. Annu Rev Ecol Syst 30:539–563. doi:10.1146/annurev.ecolsys. 30.1.539
  • Fernadez-Cornejo J, McBride W (2000) Genetically engineered crop for pest management in US agriculture: farm level effects. Agricultural report, no. 786. Resource Economics Division, Economic Research Service, USDA
  • Halfhill MD, Richards HA, Mabon SA (2001) Expression of GFP and Bt transgenes in Brassica napus and hybridization with Brassica rapa. Theor Appl Genet 103:659–667. doi:10.1007/ s001220100613
  • Hawes C, Haughton AJ, Osborne JL, Roy DB, Clark SJ, Perry JN et al (2003) Responses of plants and invertebrate trophic groups to contrasting herbicide regimes in the Farm Scale Evaluations of genetically modified herbicide-tolerant crops. Philos Trans R Soc Lond B Biol Sci 358:1899–1913. doi:10.1098/rstb.2003.1406
  • Heard MS, Hawes C, Champion GT, Clark SJ, Firbank LG, Haughton AJ et al (2003a) Weeds in fields with contrasting conventional and genetically modified herbicide-tolerant crops. I. Effects on abundance and diversity. Philos Trans R Soc Lond B Biol Sci 358:1819–1832. doi:10.1098/rstb.2003.1402
  • Heard MS, Hawes C, Champion GT, Clark SJ, Firbank LG, Haughton AJ et al (2003b) Weeds in field with contrasting conventional and genetically modified herbicide-tolerant crops. II. Effects on individual species. Philos Trans R Soc Lond B Biol Sci 358:1833–1846. doi:10.1098/rstb.2003.1401
  • Huang JK, Rozelle S, Pray C, Wang QF (2002) Plant biotechnology in China. Science 295:674–677. doi:10.1126/science.1067226
  • Lavigne C, Klein EK, Couvet D (2002) Using seed purity data to estimate an average pollen mediated gene flow from crops to wild relatives. Theor Appl Genet 104:139–145. doi:10.1007/ s001220200017
  • Lefol E, Fleury A, Darmency H (1996) Gene dispersal from transgenic crops. II. Hybridization between oilseed rape and the wild hoary mustard. Sex Plant Reprod 9:189–196. doi: 10.1007/BF02173097
  • Lu B-R (2004) Conserving biodiversity of soybean gene pool in the biotechnology era. Plant Species Biol 19:115–125
  • Messeguer J, Fogher C, Guiderdoni E, Marfa V, Catala MM, Baldi G et al (2001) Field assessment of gene flow from transgenic to cultivated rices (Oryza sativa L.) using a herbicide resistance genes as tracer marker. Theor Appl Genet 103:1151–1159. doi: 10.1007/s001220100713
  • Prakash CS (2001) The genetically modified crop debate in the context of agricultural evolution. Plant Physiol 126:8–15. doi: 10.1104/pp.126.1.8
  • Van Raamsdonk LWD, Schouten HJ (1997) Gene flow and establishment of transgenes in natural plant populations. Acta Bot Neerl 46:69–84
  • Ritala A, Nuutila AM, Aikasalo R, Kauppinen V, Tammisola J (2002) Measuring gene flow in the cultivation of transgenic barley. Crop Sci 42(1):278–285
  • Roy DB, Bohan DA, Haughton AJ, Hill MO, Osborne JL, Clark SJ et al (2003) Invertebrates and vegetation of field margins adjacent to crops subject to contrasting herbicide regimes in the Farm Scale Evaluations of genetically modified herbicidetolerant crops. Philos Trans R Soc Lond, B 358:1879–1898. doi: 10.1098/rstb.2003.1404
  • Snow A (2002) Transgenic crops—why gene flow matters. Nat Biotechnol 20:542. doi:10.1038/nbt0602-542
  • Squire GR, Brooks DR, Bohan DA, Champion GT, Daniels RE, Haughton AJ et al (2003) On the rationale and interpretation of the farm scale evaluations of genetically modified herbicidetolerant crops. Philos Trans R Soc Lond B Biol Sci 358:1779–1799. doi:10.1098/rstb.2003.1403
  • Thomas PS (1980) Hybridization of denatured RNA and small DNA fragments transferred to nitrocellulose. Proc Natl Acad Sci USA 77:5201. doi:10.1073/pnas.77.9.5201
Uwagi
Rekord w opracowaniu
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.agro-6618a603-9b7a-4d3b-acbd-94ab92a91d49
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.