Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2019 | 28 | 4 |
Tytuł artykułu

Spatial variability of soil physical properties based on GIS and geo-statistical methods in the red beds of the Nanxiong Basin, China

Warianty tytułu
Języki publikacji
Spatial variability of soil has an important influence on the structure and function of soil. The spatial distribution of soil physical properties provides basic and useful information relevant to soil management and ecological protection. A typical red beds basin was selected for this study, soil samples at 0-20 cm were taken from 150 locations in the northeast part of Nanxiong Basin, in which GIS and geostatistics were used to analyze the spatial variability of the soil physical properties. The results show that the coefficients of variation of soil bulk density, total porosity and capillary porosity are 9.82%, 4.47%, and 3.72%, respectively, which indicate weak variation. Pearson correlation indicated that soil bulk density was significantly positively correlated with soil moisture and capillary water capacity (p<0.01), with correlation coefficients of 0.85 and 0.91, respectively, but was significantly negatively correlated with total porosity, capillary porosity and non-capillary porosity, with correlation coefficients of 0.82, 0.71 and 0.94, respectively (p<0.01). The spatial distributions of soil physical properties using ordinary kriging (OK) and empirical bayesian kriging (EBK) methods were subjected to comparative analysis. In addition, different cross-validation indicators were applied to assess the performance of different interpolation methods. Cross-validation demonstrated that EBK performed better than OK. And EBK produced smaller regions of predicted soil physical properties than OK, highlighting the necessity of choosing the appropriate methods in studying the spatial distribution of soil properties.
Słowa kluczowe
Opis fizyczny
  • School of Geography and Planning, Sun Yat-sen University, Guangzhou, China
  • School of Geography and Planning, Sun Yat-sen University, Guangzhou, China
  • School of Geographical Sciences, Southwest University, Chongqing, China
  • School of Civil Engineering, Sun Yat-sen University, Guangzhou, China,
  • 1. IQBAL J., THOMASSON J.A., JENKONS J.N., OWENS P.R., WHISLER F.D. S. Soil Science Society of America Journal. 69 (4), 1338, 2005.
  • 2. Liu H., Liu G., Zhou Y., He C. Spatial distribution and influence analysis of soil heavy metals in a hilly region of sichuan basin. Polish Journal of Environmental Studies, 26 (2), 725, 2017.
  • 3. DUNIEC G., MAZUR A. Modified description of soil processes vs. quality of numerical weather forecasts - “Bare Soil” case. Ecological Chemistry & Engineering S. 22 (4), 659, 2016.
  • 4. LIU Z.P, SHAO M.A., WANG Y.Q. Scale-dependent correlations between soil properties and environmental factors across the Loess Plateau of China. Soil Research. 51 (2), 112, 2013.
  • 5. ZHANG H.H., NA T., ZHANG Q. Spatial heterogeneity of loess contour tilled microtopographic slope in rainfall erosion. Soil Science and Plant Nutrition. 62 (5-6), 409, 2016.
  • 6. GUAN F., XIA M., TANG X., FAN S. Spatial variability of soil nitrogen, phosphorus and potassium contents in moso bamboo forests in yong’an city, china. Catena. 150, 161, 2017.
  • 7. LIU Z.P., SHAO M.A., WANG Y.Q. Large-scale spatial variability and distribution of soil organic carbon across the entire Loess Plateau, China. Soil Research. 50 (2), 114, 2012.
  • 8. SØVIK A.K, AGAARD P. Spatial variability of a solid porous framework with regard to chemical and physical properties. Geoderma. 113, 47, 2003.
  • 9. SI B.C. Spatial Scaling Analyses of Soil Physical Properties: A Review of Spectral and Wavelet Methods. Vadose Zone Journal. 7 (2), 547, 2008.
  • 10. WANG Y.Q., Zhang X.C., Huang C.Q. Spatial variability of soil total nitrogen and soil total phosphorus under different land uses in a small watershed on the Loess Plateau, China. Geoderma. 150 (1-2), 141, 2009.
  • 11. GOOVAERTS P. Geostatistics in soil science: state-of-theart and perspectives. Geoderma. 89 (1-2), 1, 1999.
  • 12. HARUNA S.I., NKONGOLO N.V. Variability of Soil Physical Properties in a Clay-Loam Soil and Its Implication on Soil Management Practices. Isrn Soil Science. 2013 (2013), 1, 2015.
  • 13. GOOVAERTS P. Geostatistical tools for characterizing the spatial variability of microbiological and physico-chemical soil properties. Biology and Fertility of Soils. 27 (4), 315, 1998.
  • 14. NIELSEN D.R. Spatial variability of field-measured soil-water properties. Hilgardia. 42 (7), 215, 1973.
  • 15. KANG J., JIN R., LI X., ZHANG Y. Block Kriging With Measurement Errors: A Case Study of the Spatial Prediction of Soil Moisture in the Middle Reaches of Heihe River Basin. IEEE Geoscience & Remote Sensing Letters. 99, 1, 2017.
  • 16. SERRANO J.M., SHAHIDIAN S., SILVA J.M.D. Spatial variability and temporal stability of apparent soil electrical conductivity in a Mediterranean pasture. Precision Agriculture. 18 (2), 1, 2017.
  • 17. WALTER C., MCBRATNEY A.B., DOUAOUI A. MINASNY B., WALTER C. Spatial prediction of topsoil salinity in the Chelif Valley, Algeria, using local ordinary kriging with local variograms versus whole-area variogram. Soil Research. 39 (2), 259, 2001.
  • 18. KNOTTERS M., BRUS D.J., VOSHAAR J.H.O. A comparison of kriging, co-kriging and kriging combined with regression for spatial interpolation of horizon depth with censored observations. Geoderma. 67 (3), 1995.
  • 19. YANG Q., JIANG Z., MA Z., LI H. Spatial prediction of soil water content in karst area using prime terrain variables as auxiliary cokriging variable. Environmental Earth Sciences. 72, 4303, 2014.
  • 20. MICHAEL S., RUPRECHT H., PETER W., ROBIN G. Area-to-point kriging of soil phosphorus composite samples. Communications in Soil Science & Plant Analysis. 43 (7), 1024, 2012.
  • 21. HU S., CHENG Q., WANG L., XU D. Modeling land price distribution using multifractal IDW interpolation and fractal filtering method. Landscape & Urban Planning. 110 (1), 25, 2013.
  • 22. VAHEDI A.A. Monitoring soil carbon pool in the Hyrcanian coastal plain forest of Iran: Artificial neural network application in comparison with developing traditional models. Catena. 152, 182, 2017.
  • 23. ROMANO N., SANTINI A. Effectiveness of using pedo-transfer functions to quantify the spatial variability of soil water retention characteristics. Journal of Hydrology. 202 (1-4), 137, 1997.
  • 24. BAKHSH A., COLVIN T.S., JAYNES D.B., KANWAR R.S., TIM U.S. Using soil attributes and gis for interpretation of spatial variability in yield. Transactions of the Asae. 43 (4), 819, 2000.
  • 25. LI J., HEAP A.D. A review of comparative studies of spatial interpolation methods in environmental sciences: performance and impact factors. Ecological Informatics. 6, 228, 2011.
  • 26. SAMSONOVA V.P., BLAGOVESHCHENSKII Y.N., MESHALKINA Y.L. Use of Empirical Bayesian kriging for revealing heterogeneities in the distribution of organic carbon on agricultural lands. Eurasian Soil Science. 50 (3), 305, 2017.
  • 27. MULCAN A., MITSOVA D., HINDLE T., HANSON H., COLEY C. Marine Benthic Habitats and Seabed Suitability Mapping for Potential Ocean Current Energy Siting Offshore Southeast Florida. Journal of Marine Science and Engineering. 3, 276, 2015.
  • 28. WEI J.B., XIAO D.N., ZENG H., FU Y.K. Spatial variability of soil properties in relation to land use and topography in a typical small watershed of the black soil region, northeastern china. Environmental Geology. 53 (8), 1663, 2008.
  • 29. WANG Y., LI Y., XIAO D. Catchment scale spatial variability of soil salt content in agricultural oasis, Northwest China. Environmental Geology. 56 (2), 439, 2008.
  • 30. LIU S.L., LI Y., WU J.S., HUANG D.Y., SU Y.R., WEI W.X. Spatial variability of soil microbial biomass carbon, nitrogen and phosphorus in a hilly red soil landscape in subtropical china. Soil Science & Plant Nutrition. 56 (5), 693, 2010.
  • 31. FU T., CHEN H., ZHANG W., NIE Y., GAO P., WANG K. Spatial variability of surface soil saturated hydraulic conductivity in a small karst catchment of southwest china. Environmental Earth Sciences. 74 (3), 2381, 2015.
  • 32. HAN F.P., ZHENG J.Y., HU W., ZHANG X.C. Spatial variability and distribution of soil nutrients in a catchment of the loess plateau in china. Acta Agriculturae Scandinavica. 60 (1), 48, 2010.
  • 33. FANG X., XUE Z., LI B., AN S. Soil organic carbon distribution in relation to land use and its storage in a small watershed of the loess plateau, china. Catena. 88 (1), 6, 2012.
  • 34. LIU Z.P., SHAO M.A., WANG Y.Q. Large-scale spatial interpolation of soil pH across the Loess Plateau, China. Environ. Earth Sci. 69, 2731, 2012.
  • 35. WANG Z.M., ZHANG B., SONG K.S., LIU D.W., REN C.Y. Spatial variability of soil organic carbon under maize monoculture in the Song-Nen Plain, Northeast China. Pedosphere. 20, 80, 2010.
  • 36. UYGUR V., IRVEM A., KARANLIK S., AKIS R. Mapping of total nitrogen, available phosphorous and potassium in amik plain, turkey. Environmental Earth Sciences. 59 (5), 1129, 2010.
  • 37. ALLAIREA S.E., CAMBOURIS A.N., LAFONDA J.A., LANGEA S.F., PELLETIERC B., DUTILLEUL P. Spatial variability of potato tuber yield and plant nitrogen uptake related to soil properties. Agronomy Journal. 106, 851, 2014.
  • 38. YANG Z.P., OOUYANG H., ZHANG X., XU X.L., ZHOU C.P., YANG W.B. Spatial variability of soil moisture at typical alpine meadow and steppe sites in the Qinghai-Tibetan Plateau permafrost region. Environmental Earth Sciences. 63, 477, 2011.
  • 39. WANG H.J., SHI X.Z., YU D.S, WEINDORF D.C., HUANG B., SUN W.X., RITSEMA C.J, MILNE E. Factors determining soil nutrient distribution in a smallscaled watershed in the purple soil region of Sichuan Province, China. Soil and Tillage Research. 105, 300, 2008.
  • 40. CHENG X.F., SHI X.Z., YU D.S., PAN X.Z., WANG H.J., SUN W.X. Using GIS spatial distribution to predict soil organic carbon in subtropical China. Pedosphere. 14, 425, 2004.
  • 41. LI Q.Q., LUO Y.L., WANG C.Q., LI B., ZHANG X., YUAN D.G., GAO X.S., ZHANG H. Spatiotemporal variations and factors affecting soil nitrogen in the purple hilly area of Southwest China during the 1980s and the 2010s. Science of the Total Environment. 547, 173, 2016.
  • 42. KIMIAGHALAM N., CLARK S.P., AHMARI H. An experimental study on the effects of physical, mechanical, and electrochemical properties of natural cohesive soils oncritical shear stress and erosion rate. International Journal of Sediment Research. 31, 1, 2016.
  • 43. WEI Y., WU X., CAI C. Splash erosion of clay–sand mixtures and its relationship with soil physical properties: The effects of particle size distribution on soil structure. Catena. 135, 254, 2015.
  • 44. YAN L.B., HE R.X., MILICA K.G., LUO G.S., PENG H., QIU J.X. The Dynamic Change of Vegetation Cover and Associated Driving Forces in Nanxiong Basin, China. Sustainability. 9 (3), 443, 2017.
  • 45. LIU Z.P., SHAO M.A., WANG Y.Q. Effect of environmental factors on regional soil organic carbon stocks across the Loess Plateau region, China. Agriculture, Ecosystems & Environment. 142, 184, 2011.
  • 46. YANG J., CHEN H., NIE Y., ZHANG W., WANG K. Spatial variability of shallow soil moisture and its stable isotope values on a karst hillslope. Geoderma. 264, 61, 2016.
  • 47. YASREBI J., SAFFARI M., FATHI H., KARIMIAN N., MOAZALLAHI M., GAZNI R. Evaluation and comparison of ordinary kriging and inverse distance weighting methods for prediction of spatial variability of some soil chemical parameters. Research Journal of Biological Sciences. 4 (1), 385, 2012.
  • 48. WEBSTER R., OLIVER M.A. Geostatistics for environmental scientists (Statistics in Practice). Chichester, UL.: John Wiley & Sons, 2011.
  • 49. KRIVORUCHKO K. Empirical bayesian kriging. ArcUser Fall. 6, 2012.
  • 50. LIU Z.P., SHAO M.A., WANG Y.Q. Spatial patterns of soil total nitrogen and soil total phosphorus across the entire Loess Plateau region of China. Geoderma. 197-198 (3), 67, 2013.
  • 51. GAO Q.W., DAI B., LUO C.D., LIU L., MA D., ZHANG C.C. Spatial heterogeneity of soil physical properties in Phyllostachys heterocycla cv pubescens forest, South Sichuan Bamboo Sea. Acta Ecologica Sinica. 36 (8), 2255, 2016.
  • 52. BOGUNOVIC I., PEREIRA P., BREVIK E.C. Spatial distribution of soil chemical properties in an organic farm in Croatia. Science of the Total Environment. 584-585, 535, 2017.
  • 53. CAMBARDELLA C.A., MOORMAN T.B., PARKIN T.B., KARLEN D.L., TURCO R.F., KONOPKA A.E. Field-Scale Variability of Soil Properties in Central Iowa Soils. Soil Science Society of America Journal. 58 (5), 1501, 1994.
  • 54. JABRO J.D., STEVENS B.W., EVANS R.G. Spatial relationships among soil physical properties in a grass-alfalfa hay field. Soil science. 171, 719, 2006.
  • 55. BURGESS T.M., WEBSTER R. Optimal interpolation and isarithmic mapping of soil properties. European Journal of Soil Science. 31, 315, 1980.
  • 56. TRIPATHI R., NAYAK A.K., SHAHID M., RAJA R., PANDA B.B., KUMAR A., LAL B., GAUTAM P., SAHOO R.N. Characterizing spatial variability of soil properties in salt affected coastal India using geostatistics and kriging. Arabian Journal of Geosciences. 8, 10693, 2015.
  • 57. VENTERIS E.R., BASTA N.T., BIGHAM J.M., REA R. Modeling spatial patterns in soil arsenic to estimate natural baseline concentrations. Journal of environmental quality. 43, 936, 2014.
  • 58. VERONESI F., CORSTANJE R., MAYR T. Landscape scale estimation of soil carbon stock using 3D modelling. Sci. Total Environ. 487, 578, 2014.
  • 59. XIE Y.F., CHEN T.B., LEI M., YANG J., GUO Q.J., SONG B., ZHOU X.Y. Spatial distribution of soil heavy metal pollution estimated by different interpolation methods: Accuracy and uncertainty analysis. Chemosphere. 82, 468, 2011.
  • 60. KRAVCHENKO A. Influence of spatial structure on accuracy of interpolation methods. Soil Science Society of America Journal. 67, 1564, 2003.
  • 61. MUELLER T., PIERCE F., SCHABENBERGER O., WAMCKE D. Map quality for site-specific fertility management. Soil Science Society of America Journal. 65, 1547, 2001.
Typ dokumentu
Identyfikator YADDA
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.