PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2013 | 57 | 3 |

Tytuł artykułu

Immunoreactivity of the calbindin D28k in the parahippocampal gyrus of chinchilla

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Ten adult male chinchillas were used. The localisation of calbindin D28k (CB) was examined with the use of two types of reactions: immunocytochemical peroxidase-antiperoxidase and immunofluorescence staining with a specific monoclonal antibody against CB. Immunocytochemical examination demonstrated the presence of CB-positive neurons in the following layers of all parts the parahippocampal gyrus (PG): marginal, external cellular, middle cellular, and internal cellular, i.e. in entorhinal area, parasubiculum, and presubiculum. Immunofluorescence staining revealed the presence of CB in both Hu C/D- immunoreactive (IR) neurons and nervous fibers of the PG. CB-IR neuronal cell bodies were moderately numerous (ca. 10% of Hu C/D-IR neurons) and clearly distinguished from the background. Each layer of the brain area consisted of two types of neurons: pyramidal and multiform. Among the second type of neurons, four kinds of morphologically different neuronal subclasses were observed: multipolar, bipolar, round, and Cajal-Retzius cells. It is concluded that the expression of CB in the PG of the chinchilla is species specific and limited to several subclasses of neurons.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

57

Numer

3

Opis fizyczny

p.387-391,fig.,ref.

Twórcy

autor
  • Department of Animal Anatomy and Histology, Faculty of Veterinary Medicine, University of Life Sciences, 20-950 Lublin, Poland
  • Department of Animal Anatomy and Histology, Faculty of Veterinary Medicine, University of Life Sciences, 20-950 Lublin, Poland
autor
  • Department of Animal Anatomy and Histology, Faculty of Veterinary Medicine, University of Life Sciences, 20-950 Lublin, Poland
autor
  • Department of Animal Anatomy and Histology, Faculty of Veterinary Medicine, University of Life Sciences, 20-950 Lublin, Poland
  • Department of Animal Anatomy and Histology, Faculty of Veterinary Medicine, University of Life Sciences, 20-950 Lublin, Poland

Bibliografia

  • 1. Abrahám H., Veszprémi B., Kravják A., Kovács K., Gömöri E., Seress L.: Ontogeny of calbindin immunoreactivity in the human hippocampal formation with a special emphasis on granule cells of the dentate gyrus. Int J Dev Neurosci 2009, 2, 115-127.
  • 2. Arciszewski M.B.: Distribution of calcitonin gene-related peptide (CGRP), substance P (SP) and galanin (GAL) immunoreactive nerve fibers in the seminal vesicle and prostate of the male sheep. Ann Anat 2004, 186, 83-87.
  • 3. Arciszewski M.B., Całka J., Wasowicz K., Majewski M.: Distribution and chemical coding of calretinin- and calbindin- expressing enteric neurons in the duodenum of the sheep. Pol J Vet Sci 2009, 4, 423-431.
  • 4. Barinka F., Salaj M., Rybář J., Krajčovičová E., Kubová H., Druga R.: Calretinin, parvalbumin and calbindin immunoreactive interneurons in perirhinal cortex and temporal area Te3V of the rat brain: qualitative and quantitative analyses. Brain Res 2012, 3, 14-36.
  • 5. Barski J.J.: Function of calbindin d-28k in mouse cerebellar Purkinje cells - studies with the use of transgenic animals. Thesis, Medical University of Silesia, Katowice, 2004.
  • 6. Burwell R.D.: The parahippocampal region: corticocortical connectivity. Ann N Y Acad Sci 2000, 911, 25-42.
  • 7. Condé F., Lund J.S., Jacobowitz D.M., Baimbridge K.G., Lewis D.A.: Local circuit neurons immunoreactive for calretinin, calbindin D-28k or parvalbumin in monkey prefrontal cortex: distribution and morphology. J Comp Neurol 1994, 1, 95-116.
  • 8. Cox D.J., Racca C.: Differential dendritic targeting of AMPA receptor subunit mrnas in adult rat hippocampal principal neurons and interneurons. J Comp Neurol 2013, 521, 1954- 2007.
  • 9. Czéh B., Hajnal A., Seress L.: NADPH- diaphorase positive neurons of the rat hippocampal formation: regional distribution, total number and colocalization with calcium binding proteins. Prague Med Rep 2005, 106, 261-274.
  • 10. Danglot L., Triller A., Marty S.: The development of hippocampal interneurons in rodents. Hippocampus 2006, 16, 1032-1060.
  • 11. Eustachiewicz R.: Cytoarchitectonics of the cortex of the lobus piriformis of the sheep. Pol Arch Wet 1979, 21, 405-416.
  • 12. Jaworska Adamu J., Szalak R.: Parvalbumin and calbindin d28k in the dorsal raphe nucleus of the chinchilla. Bull Vet Inst Pulawy 2009, 53, 791-794.
  • 13. Jaworska Adamu J., Szalak R., Szewemiak R.: Localisation of parvalbumin and calbindin D28k in the periaqueductal gray matter (PAG) of chinchilla. Bull Vet Inst Pulawy 2009, 53, 309- 312.
  • 14. Kawakami M., Set K., Tarasowa E., Yoshida K.: Mechanism in the limbic system controlling reproductive function of the ovary with special reference to the positive feedback of progestin to the hippocampus. Progress Brain Res 1967, 27, 69-103.
  • 15. Kowiański P., Dziewiatkowski J., Moryś J.M., Majak K., Wójcik S., Edelstein L.R., Lietzau G., Moryś J.: Colocalization of neuropeptides with calcium-binding proteins in the claustral interneurons during postnatal development of the rat. Brain Res Bull Sep 2009, 3, 100-106.
  • 16. Libby L.A., Ekstrom A.M., Ragland J.D., Charan Ranganath J.: Differential connectivity of perirhinal and parahippocampal cortices within human hippocampal subregions revealed by high-resolution functional imaging. Neuroscience 2012, 19, 6550-6560.
  • 17. Mikkonen M., Soininen H., Pitkanen A.: Distribution of parvalbumin, calretinin and calbindin -D28k- immunoreactivir neurons and fibers in the human entorhinal cortex. J Comp Neurol 1997, 388, 64-88.
  • 18. Narkiewicz O., Moryś J.: Neuroanatomia czynnościowa i kliniczna PZWL Warszawa 2001, pp. 310-311.
  • 19. Oomura Y., Ooyma H., Yamamoto T., Naka F.: Reciprocal relationship of the lateral and ventromedial hypothalamus in the regulation of food intake. Physiol Behav 1967, 2, 67-71.
  • 20. Pribram K.H.: The limbic system, efferent control of neural inhibition and behaviour. Progress Brain Res 1967, 27, 318-337.
  • 21. Reynolds G.P., Abdul-Monim Z., Neill J.C., Zhang Z.J.: Calcium binding protein markers of GABA deficits in schizophrenia-postmortem studies and animal models. Neurotox Res 2004, 1, 57-61.
  • 22. Seress L., Guyás A.I., Freund T.F.: Parvalbumin- and calbindin D28k-immunoreactive neurons in the hippocampal formation of the macaque monkey. J Comp Neurol 1991, 313, 162-177.
  • 23. Sorensen K.E., Shipley M.T.: Projections from the subiculum to the deep layers of the ipsilateral presubiculum and entorhinal cortices in the guinea pig. J Comp Neurol 1979, 188, 313-334.
  • 24. Suthana N., Haneef Z., Stern J., Mukamel R., Behnke E., Knowlton B., Fried I.: Memory enhancement and deep -brain stimulation of the entorhinal area. N Engl J Med 2012, 6, 502- 510.
  • 25. Suzuki W.A., Porteros A.: Distribution of calbindin D-28k in the entorhinal, perirhinal, and parahippocampal cortices of the macaque monkey. Comp Neurol Sep 2002, 4, 392-412.
  • 26. Skrebitskiĭ V.G., Shtark M.B.: The fundaments of neuronal plasticity. Vestn Ross Akad Med Nauk 2012, 9, 39-44.
  • 27. Szalak R.: The morphology of neurons and topography of gyrus parahippocampalis in the chinchilla. Med Weter 2008, 64, 1240-1243.
  • 28. Szalak R., Jaworska-Adamu J.: Intracellular expression of selected calcium-binding proteins in the neurons of a chinchilla's hippocampus. Med Weter 2011, 67, 695-699.
  • 29. Uva L., Schke S.G., Biella G., de Curtis M., Witter M.: Cytoarchitectonic characterization of the parahippocampal region of the guinea pig. J Comp Neurol 2004, 474, 289-303.
  • 30. Zaitsev A.V., Gonzalez-Burgos G., Povysheva N.V., Kroner S., Lewis D.A., Krimer L.S.: Localization of calcium-binding proteins in physiologically and morphologically characterized interneurons of monkey dorsolateral prefrontal cortex. Cereb Cortex 2005, 15, 1178-1186.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-65502cd2-f7ed-4415-b210-b3b0f650b1b3
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.