PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2010 | 59 | 4 |

Tytuł artykułu

Peroxidase activity in the sulfate-reducing bacterium Desulfotomaculum acetoxidans DSM 771

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Earlier research demonstrated the secretion of benzoate, which must be oxygenated to its 4-hydroxy derivative in order to be included in further sulfate uptake processes. The present study on Desulfotomaculum acetoxidans DSM 771 was designed to determine the activity and catalytic specificity of the enzyme (most probably peroxidase) catalyzing the hydroxylation of secreted benzoate. Peroxidase activity measured with ABTS (2,2'-azino-bis (3-ethylbenzathiazoline-6-sulfonic acid) during cultivation indicated the greatest activity on the third and thirteen days (3.4 and 2.3 nkat per ml sample respectively). The highest (0.7979) correlation coefficient was calculated between peroxidase activity and hydrogen peroxide levels. The cell walls from 3- and 13-day cultures were subjected to an isolation procedure, PIPES (piperazine-N,N'-bis (2-ethane-sulfonic acid) extract followed by preparative electrophoresis. The extracts of a~30 kDa band on the gel were analyzed by Western blotting and the membrane was stained with TMB (3,3',5,5'-tetramethylbenzidine-specific for the presence of peroxidase). This same protein was incubated for 6 h with benzoate, H₂O₂ Na₂SO₄. The product formed a complex with Fe³⁺ whose maximum absorption spectra (501.7 nm) corresponded with a ferric complex of synthetic 4-hydroxy-3-sulfo-benzoate. The H₂S level during the cultivation was higher in culture grown with 15.5 mM 4-hydroxy-3-sulfo-benzoate than in culture with lactate supplemented with 15.5 mM sulfate. The role of peroxidase in oxygen utilization and sulfate uptake is discussed.

Wydawca

-

Rocznik

Tom

59

Numer

4

Opis fizyczny

p.249-255,fig.,ref.

Twórcy

  • Institute of Biology, Pedagogical University of Krakow, Podbrzezie 3, 31-054 Krakow, Poland

Bibliografia

  • Bartosz G. and M. Bartosz. 1999. Antioxidant activity: what do we measure? Acta Biochem. Pol. 46: 23-29.
  • Brioukhanov A.L. and A.I. Netrusov. 2004. Catalase and superoxide dismutase: distribution, properties, and physiological role in cells of strict anaerobes. Biochemistry (Mosc.) 69: 949-962.
  • Brune A., P. Frenzel and H. Cypionka. 2000. Life at the oxicanoxic interface: microbial activities and adaptation. FEMS Microbiol. Rev. 24: 691-710.
  • Eschemann A., M. Kuhl and H. Cypionka. 1999. Aerotaxis in Desulfovibrio sp. Environ. Microbiol. 1: 489-494.
  • Fago J.K. and M. Popowsky. 1949. Spectrophotometric determination of hydrogen sulfide. Methylene blue method. Anal. Chem. 21: 732-734.
  • Fournier M., C. Aubert, Z. Dermoun, M.C. Duran, D. Moinier and A. Dolla. 2006. Response of the anaerobe Desulfovibrio vulgaris Hildenborough to oxidative conditions: proteome and transcript analysis. Biochimie 88: 85-94.
  • Francis Jr. R.T. and R.R. Becker. 1984. Specific indication of hemoproteins in polyacrylamide gels using a double-staining process. Anal. Biochem. 136: 509-514.
  • Fuseler K., D. Krekeler, U. Sydow and H. Cypionka. 1996. A common pathway of sulfide oxidation by sulfate-reducing bacteria. FEMS Microbiol. Lett. 144: 129-134.
  • Gutierrez O., J. Mohanakrishnan, K.R., Sharma, R.L. Meyer, J. Keller and Z. Yuan. 2008. Evaluation of oxygen injection as a means of controlling sulfide production in a sewer system. Water Res. 42: 4549-4561.
  • Johnson M.S., LB. Zhulin, M.E. Gapuzan and B.L. Taylor. 1997. Oxygen-dependent growth of the obligate anaerobe Desulfovibrio vulgaris Hildenborough. J. Bacteriol. 179: 5598-5601.
  • Kuever J., J. Kulmer, S. Jannsen, U. Fischer and K.H. Blotevogel. 1993. Isolation and characterization of a new spore-forming sulfate-reducing bacterium growing by complete oxidation of catechol. Arch. Microbiol. 159: 282-288.
  • Luterek J., L. Gianfreda, M. Wojtaś-Wasilewska, J. Rogalski, M. Jaszek, E. Malarczyk, A. Dawidowicz, M. Finks, G. Ginalska and A. Leonowicz. 1997. Screening of the wood-rotting fungi for lacease production: introduction by ferulic acid, partial purification, and immobilization of lacease from the high laccase-producing strain, Cerrena unicolor. Acta Microbiol. Polon. 46: 297-311.
  • McDonnel A. and L.A. Stachelin. 1981. Detection of cytochrome f, a c-class cytochrome with diaminobenzidine in polyacrylamide gels. Anal. Biochem. 117: 40-44.
  • Noh S.L., J.M. Choi, Y.J. An, S.S. Park and K.S. Cho. 2003. Anaerobic biodegradation of toluene coupled to sulfate reduction in oil-contaminated soils: optimum environmental conditions for field applocations. J. Environ. Sci. Health Part A Tox. Hazard Subst. Environ. Eng. 38: 1087-1097.
  • Pado R. and L. Pawłowska-Ćwięk . 2004. Changes during a long-term growth of Desulfotomaculum acetoxidans DSM 771. Acta Biol. Cracov Series Botánica 46: 101-107.
  • Pawłowska-Ćwięk L. 2006. Antioxidant processes in the culture of anaerobic sulfate-reducing bacteria (in Polish). Wydawnictwo Naukowe AP, Cracow, Poland.
  • Pawłowska-Ćwięk L. and R. Pado. 2005. The role of benzoate secreted by Desulfotomaculum acetoxidans DSM 771 in sulfate uptake. Acta Biochem. Pol. 27: 797-802.
  • Pawłowska-Ćwięk L. and R. Pado. 2007. Growth and antioxidant activity of Desulfotomaculum acetoxidans DSM 771 cultivated in acetate or lactate containing media. Pol. J. Microbiol. 56: 203-211.
  • Pick E. 1986. Microassays for superoxide and hydrogen peroxide production and nitroblue tetrazolium reduction using an enzyme immunoassay microplate reader. Met. Enzymol. 132: 407-421.
  • Rabus R. and F. Widdel. 1995. Conversion studies with substrate analogues of toluene in a sulfate-reducing bacterium, strain Tol2. Arch. Microbiol. 164: 448-451.
  • Santos W.G., I. Pacheco, M.Y. Liu, M. Teixeira, A.V. Xavier and J. LeGall. 2000. Purification and characterization of an iron superoxide dismutase and catalase from the sulfate-reducing bacterium Desulfovibrio gigas. J.Bacteriol. 182: 796-804.
  • Schink B., A. Brune and S. Schnell. 1992. Anaerobic degradation of aromatic compounds, pp. 219-242. In: Winkelmann G. (ed.) Microbial degradation of natural products, VCH, Weinheim
  • Silva G., S. Olivera, C.M. Gomes, I. Pacheco, M.Y. Liu, A.V. Xavier, M. Texeira, J. LeGall and C. Rodriges-Pousada. 1999. Desulfovibrio gigas neelaredoxin. A novel superoxide dismutase integrated in a putative oxygen sensory operon of an anaerobe. Eur. J. Biochem. 259: 235-243.
  • Szutowicz A., R.D. Kobes and P.J. Ursulak. 1984. Colorimetric assay for monoamine oxidase in tissues using peroxidase and 2,2'-azinodi(3-ethylbenzthiazoline-6-sulfonic acid) as chromogen. Anal. Biochem. 138: 86-94.
  • Woodbury W., A.K. Spencer and M.A. Stahmann. 1971. An improved procedure using ferricyanide for detecting catalase isoenzymes. Anal. Biochem. 44: 301-305.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-654dc53d-2012-4999-8cbb-4116d875c4a1
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.