PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2015 | 37 | 08 |

Tytuł artykułu

Metabolic response of narrow leaf lupine (Lupinus angustifolius ) plants to elicitation and infection with Colletotrichum lupini under field conditions

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Lupine (Lupinus spp.) is one of the crop plants from the Fabaceae family cultivated on a moderate scale in Europe, Australia and South America; however, its cultivation suffers from a severe fungal disease anthracnose caused by Colletotrichum lupini fungus. The search for resistant plant genotypes as well as methods of plant immunization against such infections is of importance. Plant interaction with pathogenic microorganisms results in complex regulation of many biochemical and physiological processes. Activation of expression of defence genes that leads to the induction of bioactive secondary metabolites biosynthesis is among them. The aim of the presented work was to investigate changes in the isoflavonoids quantities as the reaction of narrow leaf lupine (Lupinus angustifolius) plants growing in the field conditions to infection with the pathogenic fungus (C. lupini) or treatment with its phytotoxic metabolites followed after 48 h with infection with the fungus. The metabolic profiling after field experiments revealed variety-specific changes of these compounds. Elicitation of plants with fungal phytotoxin prior to infection resulted in higher levels of prenylated isoflavones, especially phytoalexins luteone and wighteone and their various glycoconjugates in comparison to those observed in plants infected only with the fungal spores. The metabolomic analyses were supported by the transcriptomic view of genes involved in isoflavonoids biosynthesis. Graphical abstract Infection of Lupinus angustifolius by Colletotrichum lupini combined with former elicitation of plants results in accumulation of prenylated isoflavonoids and change in the isoflavone prenyltransferase gene expression pattern.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

37

Numer

08

Opis fizyczny

fig.,ref.

Twórcy

  • Institute of Bioorganic Chemistry Polish Academy of Sciences, Noskowskiego 12/14, 61-704, Poznan, Poland
autor
  • Institute of Bioorganic Chemistry Polish Academy of Sciences, Noskowskiego 12/14, 61-704, Poznan, Poland
autor
  • Institute of Bioorganic Chemistry Polish Academy of Sciences, Noskowskiego 12/14, 61-704, Poznan, Poland
  • Department of Biochemistry and Biotechnology, Poznan University of Life Sciences, Wolynska 35, 60-637, Poznan, Poland
autor
  • Institute of Plant Genetics Polish Academy of Sciences, Strzeszynska 34, 60-479, Poznan, Poland
autor
  • Institute of Bioorganic Chemistry Polish Academy of Sciences, Noskowskiego 12/14, 61-704, Poznan, Poland

Bibliografia

  • Akashi T, Sasaki K, Aoki T, Ayabe S, Yazaki K (2009) Molecular cloning and characterization of a cDNA for pterocarpan 4-dimethylallyltransferase catalyzing the key prenylation step in the biosynthesis of glyceollin, a soybean phytoalexin. Plant Physiol 149:683–693
  • Banasiak J, Biala W, Staszków A, Swarcewicz B, Kepczynska E, Figlerowicz M, Jasinski M (2013) A Medicago truncatula ABC transporter belonging to subfamily G modulates the level of isoflavonoids. J Exp Bot 64:1005–1015
  • Boller T, Felix G (2009) A renaissance of elicitors: perception of microbe-associated molecular patterns and danger signals by pattern-recognition receptors. Annu Rev Plant Biol 60:379–406
  • Broeckling CD, Huhman DV, Farag MA, Smith JT, May GD, Mendes P, Dixon RA, Sumner LW (2005) Metabolic profiling of Medicago truncatula cell cultures reveals the effects of biotic and abiotic elicitors on metabolism. J Exp Bot 56:323–336
  • Chisholm ST, Coaker G, Day B, Staskawicz BJ (2006) Host-microbe interactions: shaping the evolution of the plant immune response. Cell 124:803–814
  • Dangl JL, Jones JDG (2001) Plant pathogens and integrated defence responses to infection. Nature 411:826–833
  • Dixon RA (2001) Natural products and plant disease resistance. Nature 411:843–847
  • Dixon RA, Paiva NL (1995) Stress-induced phenylpropanoid metabolism. Plant Cell 7:1085–1097
  • Dixon RA, Steele CL (1999) Flavonoids and isoflavonoids-a gold mine for metabolic engineering. Trends Plant Sci 4:394–400
  • Dixon RW, Sumner LW (2003) Legume natural products: understanding and manipulating complex pathways for human and animal health. Plant Physiol 131:878–885
  • European Plant Science Organization (EPSO) (2005) European plant science: a field of opportunities. J Exp Bot 56:1699–1709
  • Farag MA, Huhman DV, Dixon RA, Sumner LW (2008) Metabolomics reveals novel pathways and differential mechanistic and elicitor-specific responses in phenylpropanoid and isoflavonoid biosynthesis in Medicago truncatula cell cultures. Plant Physiol 146:387–402
  • Frencel IM (1998) Report on first detection of anthracnose (Colletotrichum gloeosporioides) on lupins in Poland. Plant Dis 82:350
  • García-Pajón CM, Collado IG (2003) Secondary metabolites isolated from Colletotrichum species. Nat Prod Rep 20:426–431
  • Gladstones JS, Atkins C, Hamblin J (1998) Lupins as Crop plants: biology, production and utilization. CAB International, Wallingford
  • Gulewicz P, Szymaniec S, Bubak B, Frias J, Vidal-Valverde C, Trojanowska K, Gulewicz K (2002) Biological activity of alphagalactoside preparations from Lupinus angustifolius L. and Pisum sativum L. seeds. J Agric Food Chem 50:384–389
  • Hahlbrock K, Scheel D (1989) Physiology and molecular biology of phenylpropanoid metabolism. Annu Rev Plant Physiol Plant Mol Biol 40:347–369
  • Harborne JB, Ingham JL, King L, Payne M (1976) The isopentenyl isoflavone luteone as a pre-infectional antifungal agent in the genus Lupinus. Phytochemistry 15:1485–1487
  • Hassan S, Mathesius U (2012) The role of flavonoids in rootrhizosphere signalling: opportunities and challenges for improving plant–microbe interactions. J Exp Bot 63:3429–3444
  • He XZ, Blount JW, Ge SJ, Tang YH, Dixon RA (2011) A genomic approach to isoflavone biosynthesis in kudzu (Pueraria lobata). Planta 233:843–855
  • Ingham JL, Koskinen A, Lounasmaa M (1983) Progress in the chemistry of organic natural products 43. Springer-Verlag, Wien
  • Jasiński M, Kachlicki P, Rodziewicz P, Figlerowicz M, Stobiecki M (2009) Changes in the profile of flavonoid accumulation in Medicago truncatula leaves during infection with the fungal pathogen, Phoma medicaginis. Plant Physiol Biochem 47:847–853
  • Jones JDG, Dangl JL (2006) The plant immune system. Nature 444:323–329
  • Kachlicki P, Einhorn J, Muth D, Kerhoas L, Stobiecki M (2008) Evaluation of glycosylation and malonylation patterns in flavonoid glycosides during LC/MS/MS metabolite profiling. J Mass Spectrom 43:572–586
  • Kessmann H, Edwards R, Geno PW, Dixon RA (1990) Stress responses in Alfalfa (Medicago sativa L.). Plant Physiol 94:227–232
  • Laflamme P, Khouri H, Gulick P, Ibrahim RK (1993) Enzymatic prenylation of isoflavones in white lupin. Phytochemistry 34:147–151
  • Linthorst HJM, Van Loon LC (1991) Pathogenesis related proteins of plants. Crit Rev Plant Sci 10(1991):123–150
  • Lommen A (2009) MetAlign: interface-driven, versatile metabolomics tool for hyphenated full-scan mass spectrometry data preprocessing. Anal Chem 81:3079–3086
  • Lozovaya VV, Lygin AV, Zernova OV, Li S, Hartman GL, Widholm JM (2004) Isoflavonoid accumulation in soybean hairy roots upon treatment with Fusarium solani. Plant Physiol Biochem 42:671–679
  • Mancilla G, Jiménez-Teja D, Femenía-Ríos M, Macías-Sánchez AJ, Collado IG, Hernández-Galán R (2009) Novel macrolide from wild strains of the phytopathogen fungus Colletotrichum acutatum. Nat Prod Rep 4:395–398
  • Muth D, Kachlicki P, Krajewski P, Przystalski M, Stobiecki M (2009) Differential metabolic response of narrow leafed lupine (Lupinus angustifolius) leaves to infection with (Colletotrichum lupini). Metabolomics 5:354–362
  • Nakayama T, Suzuki H, Nishino T (2003) Anthocyanin acyltransferases: specificities, mechanism, phylogenetics, and applications. J Mol Catal B Enzym 23:117–132
  • Naoumkina M, Farag MA, Sumner LW, Tang Y, Liu C-J, Dixon RA (2007) Different mechanisms for phytoalexin induction by pathogen and wound signals in Medicago truncatula. Proc Natl Acad Sci USA 104:17909–17915
  • Nirenberg HI, Feiler U, Hagedorn G (2002) Description of Colletotrichum lupini comb. nov. in modern terms. Mycologia 94:307–320
  • Sasaki K, Mito K, Ohara K, Yamamoto H, Yazaki K (2008) Cloning and characterization of naringenin 8-prenyltransferase, a flavonoid-specific prenyltransferase of Sophora flavescens. Plant Physiol 146:1075–1084
  • Shen G, Huhman D, Lei Z, Snyder J, Sumner LW, Dixon RA (2012) Characterization of an isoflavonoid-specific prenyltransferase from Lupinus albus. Plant Physiol 159:70–80
  • Somssich IE, Hahlbrock K (1998) Pathogen defence in plants—a paradigm of biological complexity. Trends Plant Sci 3:86–90
  • Suzuki H, Sawada S, Watanabe K, Nagae S, Yamaguchi M, Nakayama T, Nishino T (2004) Identification and characterization of a novel anthocyanin malonyltransferase from scarlet sage (Salvia splendens) flowers: an enzyme that is phylogenetically separated from other anthocyanin acyltransferases. Plant J 38:994–1003
  • Tahara S, Ibrahim RK (1995) Prenylated isoflavonoids-an update. Phytochemistry 38:1073–1094
  • Treutter D (2006) Significance of flavonoids in plant resistance: a review. Environ Chem Lett 4:147–157
  • Van Etten HD, Mansfield JW, Bailey JA, Farmer EE (1994) Two classes of plan antibiotics: phytoalexins versus phytoanticipines. Plant Cell 6:1191–1192
  • Wojakowska A, Muth M, Narożna D, Mądrzak C, Stobiecki M, Kachlicki P (2013) Changes of phenolic secondary metabolite profiles in the reaction of narrow leaf lupin (Lupinus angustifolius) plants to infections with Colletotrichum lupini fungus or treatment with its toxin. Metabolomics 9:575–589
  • Zhao J, Huhman D, Shadle G, He XZ, Sumner LW, Tang Y, Dixon RA (2011) MATE2 mediates vacuolar sequestration of flavonoid glycosides and glycoside malonates in Medicago truncatula. Plant Cell 23:1536–1555

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-653b812f-938b-4de3-819a-3e182ec3bbcd
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.