Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2011 | 20 | 5 |
Tytuł artykułu

Volatile organic compound emissions by winter wheat plants (Triticum aestivum L.) under Fusarium spp. infestation and various abiotic conditions

Warianty tytułu
Języki publikacji
The co-occurrences of biotic and abiotic factor stresses were studied on winter wheat cv. “Tonacja”. In the first experiment the controlled infestation by Fusarium spp. and water stress were applied, and in the second experiment Fusarium spp. and various light intensities were given to winter wheat plants. The objective of this study was to determine how wheat’s emission of volatile organic compounds (VOCs) depends on the biotic/abiotic factors. In the first experiment, nine VOCs were indicated as a result of Fusarium spp. infestation; three of the terpenoids (linalool, β-caryophyllene and β-farnesene) and six green leaf volatiles (GLVs) ((Z)-3-hexenal, (E)-2-hexenal, (Z)-3-hexen-1-ol, (E)-2-hexen-1-ol, 1-hexyl acetate, and (Z)-3-hexen-1-yl acetate). Total amount of VOCs emitted by wheat reached 4-610 ng・h-1 plant d. wt-1. Control plants (not infested) released a significantly lower amount of volatiles than diseased. Water regimes, established as the plant available water capacity (PAWC), range from 40 to 80%, caused the increasing emission of VOCs by diseased plants. Wheat that suffered from water stress (40% PAWC) emitted the greatest amount of GLVs of all control plants. Meanwhile, diseased wheat at drought also emitted terpenoids. In the second experiment ten compounds were indicated (linalool, β-caryophyllene, benzyl acetate and (Z)-ocimene and six GLVs listed in the first experiment) as a result of Fusarium infestation in various light conditions. As light intensity increased from 65 to 295 μmol・m⁻²・s⁻¹, the diseased wheat plants produced from 27 to 337 ng・h⁻¹ plant d. wt⁻¹ of terpenoids and from 20 to 1,008 ng・h⁻¹ plant d. wt⁻¹ of GLVs. Diseased plants subjected to the highest light intensity (295 μmol・m⁻²・s⁻¹) released 45-fold more VOCs than control plants. This can suggest that stress caused by Fusarium spp. at higher light intensity multiplied the production of VOCs by wheat.
Słowa kluczowe
Opis fizyczny
  • Department of Plant Growth Principles and Experimental Methodology, University of Technology and Life Sciences, Kordeckiego 20, 85-225 Bydgoszcz, Poland
  • 1. TINGEY D.T., MANNING M., GROTHAUS L.C., BURNS W.F. Influence of light and temperature on monoterpene emission rates from slash pine. Plant Physiol. 65, 797, 1980.
  • 2. EBEL R.C., MATTHEIS J.P., BUCHANAN D.A. Drought stress of apple trees alters leaf emissions of volatile compounds. Physiol. Plant. 93, 709, 1995.
  • 3. LORETO F., DELFINE S. Emission of isoprene from saltstressed Eucalyptus globules leaves. Plant Physiol. 123, 1605, 2000.
  • 4. VICKERS C.E., GERSHENZON J., LERDAU M.T., LORETO F. A unified mechanism of action for isoprenoids in plant abiotic stress. Nat. Chem. Biol. 5, 283, 2009.
  • 5. HOLOPAINEN J.K., GERSHENZON J. Multiple stress factors and the emission of plant VOCs. Trends Plant Sci. 15, 176, 2010.
  • 6. DUDAREVA N., NEGRE F., NAGEGOWDA D.A., ORLOVA I. Plant Volatiles: Recent Advances and Future Perspectives. Crit. Rev. Plant Sci. 25, 417, 2006.
  • 7. TURLINGS T.C.J., TUMLINSOSN J.H. Systemic release of chemical signals by herbivore-injured corn. Proc. Natl. Acad. Sci. U.S.A. 89, 8399, 1992.
  • 8. PARE P.W., TUMLINSON J.H. De novo biosynthesis of volatiles induced by insect herbivory in cotton plants. Plant Physiol. 4, 1161, 1997.
  • 9. DE VOS M., JANDER G. Volatile communication in plantaphid interactions. Curr. Opin. Plant Biol. 13, 366, 2010.
  • 10. LEITNER M., KAISER R., RASMUSSEN M.O., DRIGUEZ H., BOLAND W., MITHOFER A. Microbial oligosaccharides differentially induce volatiles and signalling components in Medicago truncatula. Phytochemistry 69,2029, 2008.
  • 11. YI H-S., HEIL M., ADAME-ALVAREZ R.M., BALLHORN D.J., RYU CH-M. Airborne induction and priming of plant defenses against a bacterial pathogen. Plant Physiol. 151, 2152, 2009.
  • 12. WANG Q.H, DORN S. Selection on olfactory response to semiochemicals from a plant-host complex in a parasitic wasp. Heredity 91, 430, 2003.
  • 13. ALVAREZ-CASTELLANOS P.P., BISHOP C.D., PASCUAL-VILLALOBOS M.J. Antifungal activity of the essential oil of flowerheads of garland chrysanthemum (Chrysanthemum coronarium) against agricultural pathogens. Phytochemistry 57, 99, 2001.
  • 14. PIESIK D., WENDA-PIESIK A., WEAVER D.K., MORRILL W.L. Influence of Fusarium crown rot disease on semiochemical production by wheat plants. J. Phytopathol. 155, 488, 2007.
  • 15. WENDA-PIESIK A., PIESIK D., LIGOR T., BUSZEWSKI B. Volatile organic compounds (VOCs) from cereal plants infested with crown rot – identification and capacity to induce production of VOCs in uninfested plants. Int. J. Pest Manage. 56, 377, 2010.
  • 16. DICKE M., BRUIN J. Chemical information transfer between plants: back future. Biochem. Syst. Ecol. 29, 981, 2001.
  • 17. BRIGGLE L.W., CURTIS B.C. Wheat worldwide. In E.G. Heyne, Ed. Wheat and wheat improvement, 2nd ed., Madison, WI, pp. 32, 1987.
  • 18. WILHITE D.A. Drought Assessment, Management and Planning: Theory and Case Studies. Kluwer Academic Publishers, Hingham, MA, pp. 293, 1993.
  • 19. EITZINGER J., STASTNA M., ZALUD Z., DUBROVSKY M. A simulation study of the effect of soil water balance and water stress on winter wheat production under different climate change scenarios. Agr. Water Manage. 61, 195, 2003.
  • 20. GRAEFF S., CLAUPEIN W. Identification and discrimination of water stress in wheat leaves (Triticum aestivum L.) by means of reflectance measurements. Irrig. Sci. 26, 61, 2007.
  • 21. BOS H.J., NEUTEBOOM J.H. Morphological analysis of leaf and tiller number dynamics of wheat (Triticum aestivum L.): Responses to temperature and light intensity. Ann.Bot. 81, 131, 1998.
  • 22. CHORY J. Light modulation of the vegetative development. Plant Cell 9, 1225, 1997.
  • 23. DODMAN R.L., WILDERMUTH G.B. Inoculation methods for assessing resistance in wheat to crown rot caused by Fusarium graminearum Group 1. Aust. J. Agr. Res. 38, 473, 1987.
  • 24. WILDERMUTH G.B., MCNAMARA R.B. Testing wheat seedlings for resistance to crown rot caused by Fusarium graminearum Group 1. Plant Dis. 78, 949, 1994.
  • 25. STAUSS R. Compendium of growth stage identification keys for mono- and dicotyledonous plants. Extended BBCH scale. Ciba-Geigy AG, Postfach, Basel. ISBN 3-9520749-0-x. 1994.
  • 26. TSENOVA V., MANOLOVA S., STOIKOV H. Soil moisture and humidity influence on the wheat yield. BALWOISOhrid, Republic of Macedonia 27-31 May, pp. 1-6, 2008.
  • 27. ZHAO C-X. HE M-R., WANG Z-L., WANG Y-F., LIN Q. Effects of different water availability at post-anthesis stage on grain nutrition and quality in strong-gluten winter wheat. C.R. Biologies 332, 759, 2009.
  • 28. EVTUSHENKO E.V., CHEKUROV V.M. Inheritance of the light intensity response in spring cultivars of common wheat. Hereditas 141, 288, 2004.
  • 29. WORLAND A.J., BORNER A., KORZUN V., LI W.M., PETROVIC S., SAYERS E.J. The influence of the photoperiodic genes on the adaptability of European winter wheats. Euphytica 100, 385, 1998.
  • 30. JAKOBSEN H.B., OLSEN C.E. Influence of climatic factors on emission of flower volatiles in-situ. Planta 192, 365, 1994.
  • 31. SCHUH G., HEIDEN A.C., HOFFMANN TH., KAHL J., ROCKEL P., RUDOLPH J., WILDT J. Emissions of volatile organic compounds from sunflower and beech: dependence on temperature and light intensity. J. Atmos. Chem. 27, 291, 1997.
  • 32. STAUDT M., SEUFERT G. Light-dependent emission of monoterpenes by holm oak (Quercus ilex L.). Naturwissenschaften 82, 89, 1995.
  • 33. SHARKEY T.D., LORETO F. Water stress, temperature, and light effects on the capacity for isoprene emission and photosynthesis of kudzu leaves. Oecologia 95, 328, 1993.
  • 34. HEWITT C.N., CAO X.-L., BOISSARD C., DUCKHAM C.S. Sources of natural VOCs in the atmosphere. In R.E. Hester, R.M. Harrison Ed. Volatile organic compounds in the atmosphere. Royal Society of Chemistry, Thomas Graham House, Cambrige, UK, 132 pp, 1995.
  • 35. VUORINEN T., NERG A-M., SYRJALA L., PELTONEN P., HOLOPAINEN J-K. Epirrita autumnata induced VOC emission of silver birch differ from emission induced by leaf fungal pathogen. Arthropod-Plant Interact. 1, 159, 2007.
  • 36. PIESIK D., WENDA-PIESIK A., WEAVER D.K, MACEDO T.B., MORRILL W.L. Influence of Fusarium and wheat stem sawfly infestation on volatile compounds production by wheat plants. J. Plant Prot. Res. 49, 167, 2009.
  • 37. LACY COSTELLO B.P.J., EVANS P., EWEN R.J. Gas chromatography-mass spectrometry analyses of volatile organic compounds from potato tubers inoculated with Phytophtora infestans or Fusarium coeruleum. Plant Pathol. 50, 489, 2001.
  • 38. IBRAHIM M.A., STEWARD-JONES A., PULKKINEN G., POPPY G.M., HOLOPAINEN J.K. The influence of different nutrient levels on insect-induced plant volatiles in Bt and conventional oilseed rape plants. Plant Biol. 10, 97, 2008.
  • 39. GOUINGUENE S.P., TURLINGS T.C.J. The effects of abiotic factors on induced volatile emissions in corn plants. Plant Physiol. 129, 1296, 2002
Typ dokumentu
Identyfikator YADDA
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.