PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2015 | 84 | 2 |

Tytuł artykułu

Are hermaphrodites better adapted to the colonization process in trioecious populations of Salix myrsinifolia?

Autorzy

Treść / Zawartość

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
In trioecious plant populations, the role of hermaphroditism is often uncertain. We investigated the advantages of hermaphroditism in the dioecious shrub Salix myrsinifolia. The sex ratio of 30 S. myrsinifolia populations in northeastern Poland (secondary range) and Lithuania (primary range) was investigated in 2010-2011. Measures of reproductive (number of catkins, number of flowers in catkins) and vegetative traits (height, diameter, number of shoots, vitality) were taken and compared among sexual morphs. In two populations, measurements collected 14 years prior on marked individuals were used to determine the rate of changes in height, crown diameter and survivorship rates. We found trioecy mostly in the secondary part of the range with an average share of hermaphrodites reaching 21% in the trioecious populations. The sex ratio varied between populations, but tended mostly towards female domination. Several traits differed significantly among sexes. The characteristics of hermaphrodites were often intermediate between males and females and provided no evidence for the higher competitive abilities of hermaphrodites. We concluded that the possible gain of hermaphroditism in the colonization process is restricted to reproduction. We consider hermaphroditism in S. myrsinifolia as an equilibrium between the allocation of resources for growth and reproduction in unstable conditions on the margins of the range.

Wydawca

-

Rocznik

Tom

84

Numer

2

Opis fizyczny

p.167-175,fig.,ref.

Twórcy

autor
  • Institute of Biology, University of Bialystok, Ciolkowskiego 1j, 15-245 Bialystok, Poland
autor
  • Institute of Biology, University of Bialystok, Ciolkowskiego 1j, 15-245 Bialystok, Poland

Bibliografia

  • 1. Dawson TE, Geber MA. Sexual dimorphism in physiology and morphology. In: Geber MA, Dawson TE, Delph LF, editors. Genderand sexual dimorphism in flowering plants. Berlin: Springer-Verlag;1999. p. 176–215. http://dx.doi.org/10.1007/978-3-662-03908-3_7
  • 2. Barrett SCH, Hough J. Sexual dimorphism in flowering plants. J Exp Bot. 2013;64:67–82. http://dx.doi.org/10.1093/jxb/ers308
  • 3. Ågren J, Danell K, Elmqvist T, Ericson L, Hjältén J. Sexual dimorphism and biotic interactions. In: Geber MA, Dawson TE,Delph LF, editors. Gender and sexual dimorphism in floweringplants. Berlin: Springer-Verlag; 1999. p. 217–246. http://dx.doi.org/10.1007/978-3-662-03908-3_8
  • 4. Cornelissen T, Stirling P. Sex-biased herbivory: a metaanalysis of the effects of gender on plant–herbivore interactions. Oikos. 2005;111:488–500. http://dx.doi.org/10.1111/j.1600-0706.2005.14075.x
  • 5. Ashman TL. The role of herbivores in the evolution of separate sexes from hermaphroditism. Ecology. 2002;83:1175–1184. http://dx.doi.org/10.2307/3071932
  • 6. Bierzychudek P, Eckhart V. Spatial segregation of the sexes in dioecious plants. Am Nat. 1988;132:34–43. http://dx.doi.org/10.1086/284836
  • 7. Mercer CA, Eppley SM. Inter-sexual competition in a dioecious grass. Oecologia. 2010;164:657–664. http://dx.doi.org/10.1007/s00442-010-1675-4
  • 8. Obeso JR. The costs of reproduction in plants. New Phytol. 2002;155:321–348. http://dx.doi.org/10.1046/j.1469-8137.2002.00477.x
  • 9. Freeman DC, Harper KT, Charnov EL. Sex change in plants: old and new observations and new hypotheses. Oecologia. 1980;47:222–232.http://dx.doi.org/10.1007/BF00346825
  • 10. Bierzychudek P. Determinants of gender in Jack-in-the-pulpit: the influence of plant size and reproductive history. Oecologia.1984;65:14–18. http://dx.doi.org/10.1007/BF00384456
  • 11. Iszkuło G, Jasińska AK, Romo A, Tomaszewski D, Szmyt J. The greater growth rate of male over female of the dioecious tree Juniperus thuriferaonly in worse habitat conditions. Dendrobiology. 2011;66:15–24.
  • 12. Klinkhamer PGL, de Jong TJ, Metz H. Sex and size in cosexual plants. Trends Ecol Evol. 1997;12:260–265. http://dx.doi.org/10.1016/S0169-5347(97)01078-1
  • 13. Lloyd DG, Bawa KS. Modification of gender of seed plants in varying conditions. Evol Biol. 1984;17:255–338. http://dx.doi.org/10.1007/978-1-4615-6974-9_6
  • 14. Weiner J, Thomas SC. Size variability and competition in plant monocultures. Oikos. 1986;47:211–222. http://dx.doi.org/10.2307/3566048
  • 15. Leverich WJ, Levin DA. Age-specific survivorship and reproduction in Phlox drummondii. Am Nat. 1979;113:881–903. http://dx.doi.org/10.1086/283443
  • 16. Watkinson AR, Lonsdale WM, Firbank LG. A neighbourhood approach o self-thinning. Oecologia. 1983;56:381–384. http://dx.doi.org/10.1007/BF00379716
  • 17. Horvitz CC, Schemske DW. Leaf herbivory and neighbourhood competition in a neotropical herb: effects on demographic fates. J Ecol.2002;90:279–290. http://dx.doi.org/10.1046/j.1365-2745.2001.00660.x
  • 18. Ashman TL. The evolution of separate sexes: a focus on the ecological context. In: Harder LD, Barrett SCH, editors. Ecology and evolutionof flowers. Oxford: Oxford University Press; 2006. p. 204–222.
  • 19. Bawa KS. Evolution of dioecy in flowering plants. Annu Rev Ecol Syst. 1980;11:15–39. http://dx.doi.org/10.1146/annurev.es.11.110180.000311
  • 20. Mirski P. Exceptions from dioecy and sex lability in genus Salix. Dendrobiology. 2014;71:167–171. http://dx.doi.org/10.12657/denbio.071.017
  • 21. Primack RB, McCall C. Gender variation in a red maple population (Acer rubrum; Aceraceae): a seven-year study of a polygamodioeciousspecies. Am J Bot. 1986;73:1239–1248. http://dx.doi.org/10.2307/2444057
  • 22. Ushimaru A, Matsui K. Sex change in tree species: long-term monitoring of sex expression in Acer rufinerve. Nord J Bot. 2001;21:397–399. http://dx.doi.org/10.1111/j.1756-1051.2001.tb00785.x
  • 23. Mędrzycki P, Kołaszewska B, Browiński P. Subdioecy in invasive populations of Acer negundo (Aceraceae) in eastern Poland. Pol BotStud. 2006;22:355–364.
  • 24. Iszkuło G, Jasińska AK.Variation in sex expression in Polish and Ukrainian populations of Taxus baccata L. Dendrobiology. 2004;52:29–32.
  • 25. Rottenberg A. Fertility of exceptional bisexual individuals in four dioecious plant species. Sex Plant Reprod. 2000;12:219–221. http://dx.doi.org/10.1007/s004970050003
  • 26. Dorken ME, Pannell JR. Hermaphrodite sex allocation evolves when mating opportunities change. Curr Biol. 2009;19:514–517. http://dx.doi.org/10.1016/j.cub.2009.01.067
  • 27. Yu L, Lu J. Does landscape fragmentation influence sex ratio of dioecious plants? A case study of Pistacia chinensis in the Thousand-IslandLake region of China. PLoS ONE. 2011;6(8):e22903. http://dx.doi.org/10.1371/journal.pone.0022903
  • 28. Ehlers BK, Bataillon T. “Inconstant males” and the maintenance of labile sex expression in subdioecious plants. New Phytol. 2007;174:194–211. http://dx.doi.org/10.1111/j.1469-8137.2007.01975.x
  • 29. Faliński JB. Androgyny of individuals and polygamy in populations of Salix myrsinifolia Salisb. in the south-western part of its geographical range (NE-Poland). Perspect Plant Ecol Evol Syst. 1998;1:238–266.http://dx.doi.org/10.1078/1433-8319-00061
  • 30. Charnov EL, Maynard Smith J, Bull JJ. Why be an hermaphrodite? Nature. 1976;263:125–126. http://dx.doi.org/10.1038/263125a0
  • 31. Nanami S, Kawaguchi H, Yamakura T. Sex change towards female in dying Acer rufinerve trees. Ann Bot. 2004;93:733–740. http://dx.doi.org/10.1093/aob/mch093
  • 32. Barrett SCH, Case AL, Peters GB. Gender modification and resource allocation in subdioecious Wurmbea dioica (Colchicaceae). J Ecol.1999;87:123–137. http://dx.doi.org/10.1046/j.1365-2745.1999.00336.x
  • 33. Sarkissian TS, Barrett SCH, Harder LD. Gender variation in Sagittaria latifolia (Alismataceae): is size all that matters? Ecology.2001;82:360–373. http://dx.doi.org/10.2307/2679865
  • 34. Pannell JR. The maintenance of gynodioecy and androdioecy in a metapopulation. Evolution. 1997;51:10–20. http://dx.doi.org/10.2307/2410955
  • 35. Vaughton G, Ramsey M. Gender plasticity and sexual system stability in Wurmbea. Ann Bot. 2012;109:521–530. http://dx.doi.org/10.1093/aob/mcr163
  • 36. Sakai AK, Weller SG. Gender and sexual dimorphism in flowering plants: a review of terminology, biogeographic patterns, ecologicalcorrelates, and phylogenetic approaches. In: Geber MA, DawsonTE, Delph LH, editors. Sexual and gender dimorphism in flowering plants. Heidelberg: Springer-Verlag; 1999. p. 1–31. http://dx.doi. org/10.1007/978-3-662-03908-3_1
  • 37. Chmelař J, Meusel W. Die Weiden Europas. Wittenberg Lutherstadt: Die Neue Brehm – Bucherei, A Ziemsen Verlag; 1979.
  • 38. Skvortsov AK. Willows of the USSR. Moscow: Nauka; 1968.
  • 39. Zieliński J. Salix nigricans Sm. In: Browicz K, editor. Atlas rozmieszczenia drzew i krzewów w Polsce. Warszawa: PWN; 1976. p. 13–15.(vol 20).
  • 40. Faliński JB. Inwazje w świecie roślin: mechanizmy, zagrożenia, projekt badań. Phytocenosis. 2004;16:14.
  • 41. Danell K, Elmqvist T, Ericson L, Salomonson A. Sexuality in willows and preference by bark-eating voles: defense or not? Oikos.1985;44:82–90. http://dx.doi.org/10.2307/3544047
  • 42. Boecklen WJ, Price PW, Mopper S. Sex and drugs and herbivores: sex-biased herbivory in arroyo willow (Salix lasiolepis). Ecology.1990;71:581–588. http://dx.doi.org/10.2307/1940311
  • 43. Leigh A, Cosgrove MJ, Nicotra AB. Reproductive allocation in a gender dimorphic shrub: anomalous female investment inGynatrix pulchella? J Ecol. 2006;94:1261–1271. http://dx.doi.org/10.1111/j.1365-2745.2006.01164.x
  • 44. Wallace CS, Rundel PW. Sexual dimorphism and resource allocation in male and female shrubs of Simmondsia chinensis. Oecologia.1979;44:34–39. http://dx.doi.org/10.1007/BF00346394
  • 45. Ramsey M, Vaughton G. Sex expression and sexual dimorphism in subdioecious Wurmbea dioica (Colchicaceae). Int J Plant Sci.2001;162:589–597. http://dx.doi.org/10.1086/320142
  • 46. Maki M. Differences in plant size and flower production between hermaphrodites and females of two gynodioecious Chionographis (Liliaceae).Can J Bot. 1996;74:150–153. http://dx.doi.org/10.1139/b96-020
  • 47. Fleming T, Maurice S, Hamrick J. Geographic variation in breeding system and the evolutionary stability in trioecious cactus, Pachycereuspringlei (Cactaceae). Evol Ecol. 1998;12:279–289. http://dx.doi.org/10.1023/A:1006548132606
  • 48. Kay QON. Nectar from willow catkins as a food source for Blue Tits. Bird Study. 1985;32:40–44. http://dx.doi.org/10.1080/00063658509476853
  • 49. Argus GW. An experimental study of hybridization and pollination in Salix (willows). Can J Bot. 1974;52:1613–1619. http://dx.doi.org/10.1139/b74-212
  • 50. Peeters L, Totland Ø. Wind to insect pollination ratios and floral traits in five alpine Salix species. Can J Bot. 1999;77:556–563. http://dx.doi.org/10.1139/cjb-77-4-556
  • 51. Fisher MJ. The morphology and anatomy of the flowers of the Salicaceae 1–2. Am J Bot. 1928;15:307–394. http://dx.doi.org/10.2307/2435733
  • 52. Ishida K, Hiura T. Mating system and population genetic structure of an androdioecious tree, Fraxinus lanuginosa Koidz. (Oleaceae) innorthern Japan. Heredity. 2002;88:296–301. http://dx.doi.org/10.1038/sj.hdy.6800043
  • 53. Kikuchi S, Shibata M, Tanaka M, Toshimaru H, Niyama K. Analysis of the disassortative mating pattern in a heterodichogamousplant, Acer mono Maxim. using microsatellite markers. Plant Ecol.2009;204:43–54. http://dx.doi.org/10.1007/s11258-008-9564-1
  • 54. Kimura MG, Goto S, Suyama Y, Matsui M, Woeste K, Seiwa K. Morphspecific mating patterns in a low-density population of a heterodichogamous tree, Juglans ailantifolia. Plant Ecol. 2012;213:1477–1487.http://dx.doi.org/10.1007/s11258-012-0105-6
  • 55. Nybakken L, Julkunen-Tiitto R. Gender differences in Salix myrsinifolia at the pre-reproductive stage are little affected by simulatedclimatic change. Physiol Plant. 2013;147:465–476. http://dx.doi.org/10.1111/j.1399-3054.2012.01675.x
  • 56. Taylor DR, Trimble S, McCauley DE. Ecological genetics of gynodioecy in Silene vulgaris: relative fitness of females and hermaphrodites during the colonization process. Evolution. 1999;53:745–751. http://dx.doi.org/10.2307/2640714
  • 57. Pannell JR, Dorken ME. Colonisation as a common denominator in plant metapopulations and range expansions: effects on genetic diversity and sexual systems. Landsc Ecol. 2006;21:837–848. http://dx.doi.org/10.1007/s10980-005-5389-7

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-63ff4cba-7438-4106-b720-5afe86ee9707
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.