PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2013 | 35 | 11 |

Tytuł artykułu

Light stress suppresses the accumulation of epimedins A, B, C, and icariin in Epimedium, a traditional medicinal plant

Autorzy

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Epimedium is well-known in China and East Asia due to high content of flavonoid derivatives, including icariin, epimedin A, epimedin B, and epimedin C, hereafter designated as bioactive components, which have been extensively utilized to cure many diseases. So far, the molecular mechanism of the bioactive components biosynthesis remains unclear. In the present study, the effect of light stress (24 h illumination) on the accumulation of bioactive components and the expression of flavonoid genes in Epimedium was investigated. Under light stress, the structural genes CHS1, CHI1, F3H, FLS, DFR1, DFR2, and ANS were remarkably up-regulated while CHS2 and F3′H were significantly down-regulated. For transcription factors, the expression of Epimedium MYB7 and TT8 were increased while Epimedium GL3, MYBF, and TTG1 expression were depressed. Additionally, the content of bioactive components was significantly decreased under light stress. Our results suggested that the decrease of bioactive compounds may be attributed to transcripts of late genes (DFRs and ANS) increased to a higher level than that of early genes (FLS and CHS1).

Słowa kluczowe

Wydawca

-

Rocznik

Tom

35

Numer

11

Opis fizyczny

p.3271-3275,fig.,ref.

Twórcy

autor
  • Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, People’s Republic of China
autor
  • Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, Hubei, People’s Republic of China
autor
  • Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, Hubei, People’s Republic of China

Bibliografia

  • Adato A, Mandel T, Mintz-Oron S, Venger I, Levy D, Yativ M, Dominguez E, Wang Z, De Vos RCH, Jetter R, Schreiber L, Heredia A, Rogachev I, Aharoni A (2009) Fruit-surface flavonoid accumulation in tomato is controlled by a SlMYB12-regulated transcriptional network. PLoS Genet 5(12):e1000777.doi:10.1371/journal.pgen.1000777
  • Ballester A, Molthoff J, de Vos R, BtL Hekkert, Orzaez D, Fernández-Moreno J-P, Tripodi P, Grandillo S, Martin C, Heldens J, Ykema M, Granell A, Bovy A (2010) Biochemical and molecular analysis of pink tomatoes: deregulated expression of the gene encoding transcription factor SlMYB12 leads to pink tomato fruit color. Plant Physiol 152(1):71–84. doi:10.1104/pp.109.147322
  • Baudry A, Heim MA, Dubreucq B, Caboche M, Weisshaar B, Lepiniec L (2004) TT2, TT8, and TTG1 synergistically specify the expression of BANYULS and proanthocyanidin biosynthesis in Arabidopsis thaliana. Plant J 39(3):366–380. doi:10.1111/j.1365-313X.2004.02138.x
  • Cai W, Huang J, Zhang S, Wu B, Kapahi P, Zhang X, Shen Z (2011) Icariin and its derivative icariside II extend healthspan via insulin/IGF-1 pathway in C. elegans. PLoS One 6(12):e28835.doi:10.1371/journal.pone.0028835
  • Chiu LW, Li L (2012) Characterization of the regulatory network of BoMYB2 in controlling anthocyanin biosynthesis in purple cauliflower. Planta 236(4):1153–1164. doi:10.1007/s00425-012-1665-3
  • Czemmel S, Stracke R, Weisshaar B, Cordon N, Harris NN, Walker AR, Robinson SP, Bogs J (2009) The grapevine R2R3-MYB transcription factor VvMYBF1 regulates flavonol synthesis in developing grape berries. Plant Physiol 151(3):1513–1530. doi:10.1104/pp.109.142059
  • Davis MC, Fiehn O, Durnford DG (2013) Metabolic acclimation to excess light intensity in Chlamydomonas reinhardtii. Plant Cell Environ 36(7):1391–1405. doi:0.1111/pce.12071
  • deVetten N, Quattrocchio F, Mol J, Koes R (1997) The an11 locus controlling flower pigmentation in petunia encodes a novel WDrepeat protein conserved in yeast, plants, and animals. Genes Dev 11(11):1422–1434. doi:10.1101/gad.11.11.1422
  • Dixon RA, Steele CL (1999) Flavonoids and isoflavonoids: a gold mine for metabolic engineering. Trends Plant Sci 4(10):394–400. doi:10.1016/S1360-1385(99)01471-5
  • Fahlman BM, Krol ES (2009) UVA and UVB radiation-induced oxidation products of quercetin. J Photochem Photobiol B: Biol 97(3):123–131. doi:10.1016/j.jphotobiol.2009.08.009
  • Gonzalez A, Zhao M, Leavitt JM, Lloyd AM (2008) Regulation of the anthocyanin biosynthetic pathway by the TTG1/bHLH/Myb transcriptional complex in Arabidopsis seedlings. Plant J 53(5):814–827. doi:10.1111/j.1365-313X.2007.03373.x
  • Huang W, Sun W, Lv H, Xiao G, Zeng S, Wang Y (2012) Isolation and molecular characterization of thirteen R2R3-MYB transcription factors from Epimedium sagittatum. Int J Mol Sci 14(1):594–610. doi:10.3390/ijms14010594
  • Islam NM, Yoo HH, Lee MW, Dong M, Park YI, Jeong HS, Kim D-H (2008) Simultaneous quantitation of five flavonoid glycosides in Herba Epimedii by high-performance liquid chromatography– tandem mass spectrometry. Phytochem Anal 19(1):71–77. doi:10.1002/pca.1018
  • Ma H, He X, Yang Y, Li M, Hao D, Jia Z (2011) The genus Epimedium: an ethnopharmacological and phytochemical review. J Ethnopharmacol 134(3):519–541. doi:10.1016/j.jep.2011.01.001
  • Mehrtens F, Kranz H, Bednarek P, Weisshaar B (2005) The Arabidopsis transcription factor MYB12 is a flavonol-specific regulator of phenylpropanoid biosynthesis. Plant Physiol 138(2):1083–1096. doi:10.1104/pp.104.058032
  • Ming L, Chen K, Xian CJ (2013) Functions and action mechanisms of flavonoids genistein and icariin in regulating bone remodeling. J Cell Physiol 228(3):513–521. doi:10.1002/jcp.24158
  • Schaart JG, Dubos C, Romero De La Fuente I, van Houwelingen AMML, de Vos RCH, Jonker HH, Xu W, Routaboul J-M, Lepiniec L, Bovy AG (2012) Identification and characterization of MYB-bHLH-WD40 regulatory complexes controlling proanthocyanidin biosynthesis in strawberry (Fragaria 9 ananassa) fruits. New Phytol 197:454–467. doi:10.1111/nph.12017
  • Spelt C, Quattrocchio F, Mol JNM, Koes R (2000) Anthocyanin1 of petunia encodes a basic helix-loop-helix protein that directly activates transcription of structural anthocyanin genes. Plant Cell 12(9):1619–1631. doi:10.2307/3871178
  • Tong J, Zhang Q, Huang X, Fu X, Qi S, Wang Y, Hou Y, Sheng J, Sun Q (2011) Icaritin causes sustained ERK1/2 activation and induces apoptosis in human endometrial cancer cells. PLoS One 6(3):e16781. doi:10.1371/journal.pone.0016781
  • Xu Y, Li Z, Yuan L, Zhang X, Lu D, Huang H, Wang Y (2013) Variation of epimedins A, C and icariin in ten representative populations of Epimedium brevicornu Maxim, and implications for utilization. Chem Biodives 10(4):711–721. doi:10.1002/cbdv.201100424
  • Zeng S, Xiao G, Guo J, Fei Z, Xu Y, Roe B, Wang Y (2010) Development of a EST dataset and characterization of ESTSSRs in a traditional Chinese medicinal plant, Epimedium sagittatum (Sieb. Et Zucc.) Maxim. BMC Genomics 11(1):94.doi:10.1186/1471-2164-11-94
  • Zeng S, Liu Y, Zou C, Huang W, Wang Y (2013) Cloning and characterization of phenylalanine ammonia-lyase in medicinal Epimedium species. Plant Cell Tiss Organ 113(2):257–267.doi:10.1007/s11240-012-0265-z
  • Zhang H, Yang T, Li Z, Wang Y (2008) Simultaneous extraction of epimedin A, B, C and icariin from Herba Epimedii by ultrasonic technique. Ultrason Sonochem 15(4):376–385. doi:10.1016/j.ultsonch.2007.09.002
  • Zhao H, Sun J, Fan M, Fan L, Zhou L, Li Z, Han J, Wang B, Guo D (2008) Analysis of phenolic compounds in Epimedium plants using liquid chromatography coupled with electrospray ionization mass spectrometry. J Chromatogr A 1190(1–2):157–181.doi:10.1016/j.chroma.2008.02.109

Uwagi

rekord w opracowaniu

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-63c95910-57df-4294-8192-7ee1cf9773ed
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.