PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2011 | 33 | 4 |

Tytuł artykułu

Amount and activity changes of 20S proteasome modified by oxidation in salt-treated wheat root tips

Autorzy

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
To study the response of 20S proteasome in wheat (Triticum aestivum L.) roots to salt stress, the root tips from wheat seedlings treated with 200 mM NaCl for different times were used for studying its carbonyl level, caseinolytic activity, protein abundance and other biochemical characteristics. The contents of carbonylated and ubiquitinated proteins (Ub-P) were also investigated. During this stressed process, both the productive rate of O₂⁻ and the content of H₂O₂ gradually increased, with the concomitant increase in carbonyl level of total soluble proteins and 20S proteasome, together with the gradual increase in the activities of the total and 20S proteasome in salt-treated root tips. However, the amounts of 20S proteasome decreased particularly during this process. Moreover, metal-catalyzed oxidation of proteins from control plants in vitro validated that the oxidative modification also could increase the activity of 20S proteasome, but decrease its abundance. In addition, the amounts of Ub-P with molecular weights above 35 kDa remained similar to the control plants, but that below 35 kDa decreased significantly in treated root tips. The changes in the proteasome activity and amount argue in favor of the active involvement of this proteolytic system in salt-stressed plants.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

33

Numer

4

Opis fizyczny

p.1227-1237,fig.,ref.

Twórcy

autor
  • College of Food Science and Technology, Henan University of Technology, Zhengzhou, 450052, China
autor
  • College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
autor
  • College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China
autor
  • College of Food Science and Technology, Henan University of Technology, Zhengzhou, 450052, China

Bibliografia

  • Amor NB, Hamed KB, Debez A, Grignon C, Abdelly C (2005) Physiological and antioxidant responses of the perennial halophyte Crithmum maritimum to salinity. Plant Sci 168:889–899. doi:10.1016/j.plantsci.2004.11.002
  • Apel K, Hirt H (2004) Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annu Rev Plant Biol 55:373–399. doi:10.1146/annurev.arplant.55.031903.141701
  • Asada K (1999) The water–water cycle in chloroplasts: scavenging of active oxygens and dissipation of excess photons. Annu Rev Plant Physiol Plant Mol Biol 50:601–639. doi:10.1146/annurev. arplant.50.1.601
  • Asencio C, Rodriguez-Aguilera JC, Ruiz-Ferrer M, Vela J, Navas P (2003) Silencing of ubiquinone biosynthesis genes extends life span in Caenorhabditis elegans. FASEB J 17:1135–1137. doi: 10.1096/fj.02-1022fje
  • Ashraf M (2009) Biotechnological approach of improving plant salt tolerance using antioxidants as markers. Biotechnol Adv 27:84–93. doi:10.1016/j.biotechadv.2008.09.003
  • Basset G, Raymond P, Malek L, Brouquisse R (2002) Changes in the expression and the enzymic properties of the 20S proteasome in sugar-starved maize roots: evidence for an in vivo oxidation of the proteasome. Plant Physiol 128:1149–1162. doi:10.1104/pp.010612
  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein–dye binding. Anal Biochem 72:248–254. doi:10.1016/0003-2697(76).90527-3
  • Brini F, Amara I, Feki K, Hanin M, Khoudi H, Masmoudi K (2009) Physiological and molecular analyses of seedlings of two Tunisian durum wheat (Triticum turgidum L. subsp. Durum [Desf.]) varieties showing contrasting tolerance to salt stress. Acta Physiol Plant 31:145–154. doi:10.1007/s11738-008-0215-x
  • Ciechanover A, Orian A, Schwartz AL (2000) Ubiquitin-mediated proteolysis: biological regulation via destruction. Bioessays 22:442–451. doi:10.1002/(SICI)1521-1878(200005)22:5<442:AIDBIES6>3.0.CO;2-Q
  • Conconi M, Petropoulos I, Emod I, Turlin E, Biville F, Friguet B (1998) Protection from oxidative inactivation of the 20S proteasome by heat-shock protein 90. Biochem J 333:407–415
  • Davies KJ (2001) Degradation of oxidized proteins by the 20S proteasome. Biochimie 83:301–310. doi:10.10.16/S0300-9084 (01)01250-0
  • Elstner EF, Heupel A (1976) Inhibition of nitrite formation from hydroxylammoniumchloride: a simple assay for superoxide dismutase. Anal Biochem 70:616–620. doi:10.1016/0003-2697 (76)90488-7
  • Foyer CH, Noctor G (2005) Redox homeostasis and antioxidant signaling: a metabolic interface between stress perception and physiological responses. Plant Cell 17:1866–1875. doi:10.1105/ tpc.105.033589
  • Foyer CH, Noctor G (2009) Redox regulation in photosynthetic organisms: signaling, acclimation, and practical implications. Antioxid Redox Signal 11:861–905. doi:10.1089/ars.2008.2177
  • Grune T, Merker K, Sandig G, Davies KJ (2003) Selective degradation of oxidatively modified protein substrates by the proteasome. Biochem Biophys Res Commun 305:709–718. doi: 10.1016/S0006-291X.(03)00809-X
  • Grune T, Jung T, Merker K, Davies KJA (2004) Decreased proteolysis caused by protein aggregates, inclusion bodies, plaques, lipofuscin, ceroid, and ‘aggresomes’ during oxidative stress, aging, and disease. Int J Biochem Cell Biol 36:2519–2530. doi:10.1016/j.biocel.2004.04.020
  • Gu C, Kolodziejek I, Misas-Villamil J, Shindo T, Colby T, Verdoes M, Richau KH, Schmidt J, Overkleeft HS, van der Hoorn RAL (2010) Proteasome activity profiling: a simple, robust and versatile method revealing subunit-selective inhibitors and cytoplasmic, defense-induced proteasome activities. Plant J 62:160–170. doi:10.1111/j.1365-313X.2009.04122.x
  • Hancock J, Desikan R, Harrison J, Bright J, Hooley R, Neill S (2006) Doing the unexpected: proteins involved in hydrogen peroxide perception. J Exp Bot 57:1711–1718. doi:10.1093/jxb/erj180
  • He YL, Liu YL, Cao WX, Huai MF, Xu BG, Huang BR (2005) Effects of salicylic acid on heat tolerance associated with antioxidant metabolism in Kentucky bluegrass. Crop Sci 45: 988–995. doi:10.2135/crop.sci2003.0678
  • Ingvardsen C, Veierskov B (2001) Ubiquitin- and proteasomedependent proteolysis in plants. Physiol Plant 112:451–459. doi: 10.1034/j.1399-3054.2001.1120401.x
  • Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685. doi:10.1038/227680a0
  • Levine RL, Garland D, Oliver CN, Amici A, Climent I, Lenz AG, Ahn BW, Shaltiel S, Stadtman ER (1990) Determination of carbonyl content in oxidatively modified proteins. Methods Enzymol 186:464–478. doi:10.1016/0076-6879(90)86141-H
  • Li QY, Niu HB, Yin J, Wang MB, Shao HB, Deng DZ, Chen XX, Ren JP, Li YC (2008) Protective role of exogenous nitric oxide against oxidative-stress induced by salt stress in barley (Hordeum vulgare). Colloid Surf B: Biointerf 65:220–225. doi: 10.1016/j.colsurfb.2008.04.007
  • Maleknia SD, Reixach N, Buxbaum JN (2006) Oxidation inhibits amyloid fibril formation of transthyretin. FEBS J 273:5400–5406. doi:10.1111/j.1742-4658.2006.05532.x
  • Merheb CW, Cabral H, Gomes E, Da-Silva R (2007) Partial characterization of protease from a thermophilic fungus, Thermoascus aurantiacus, and its hydrolytic activity on bovine casein. Food Chem 104:127–131. doi:10.1016/j.foodchem.2006. 11.010
  • Mittler R (2002) Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci 7:405–410. doi:10.1016/S1360-1385(02)02312-9
  • Møller IM, Kristensen BK (2004) Protein oxidation in plant mitochondria as a stress indicator. Photochem Photobiol Sci 3:730–735. doi:10.1039/b315561g
  • Møller IM, Jensen PE, Hansson A (2007) Oxidative modifications to cellular components in plants. Annu Rev Plant Biol 58:459–481. doi:10.1146/annurev.arplant.58.032806.103946
  • Nyström T (2005) Role of oxidative carbonylation in protein quality control and senescence. EMBO J 24:1311–1317. doi:10.1038/ sj.emboj.7600599
  • Obin M, Shang F, Gong X, Handelman G, Blumberg J, Taylor A (1998) Redox regulation of ubiquitin-conjugating enzymes: mechanistic insights using the thiol-specific oxidant diamide. FASEB J 12:561–569
  • Palma JM, Sandalio LM, Corpas FJ, Romero-Puertas MC, McCarthy I, del Río LA (2002) Plant proteases, protein degradation, and oxidative stress: role of peroxisomes. Plant Physiol Biochem 40:521–530. doi:10.1016/S0981-9428(02)01404-3
  • Palma F, Lluch C, Iribarne C, García-Garrido JM, Tejera García NA (2009) Combined effect of salicylic acid and salinity on some antioxidant activities, oxidative stress and metabolite accumulation in Phaseolus vulgaris. Plant Growth Regul 58:307–316. doi:10.1007/s10725-009-9380-1
  • Pena LB, Pasquini LA, Tomaro ML, Gallego SM (2007) 20S proteasome and accumulation of oxidized and ubiquitinated proteins in maize leaves subjected to cadmium stress. Phytochemistry 68:1139–1146. doi:10.1016/j.phytochem.2007.02.022
  • Reinheckel T, Sitte N, Ullrich O, Kuckelkorn U, Davies KJ, Grune T (1998) Comparative resistance of the 20S and 26S proteasome to oxidative stress. Biochem J 335:637–642
  • Roberts I, Murray PF, Passeron S, Barneix AJ (2002) The activity of the 20S proteasome is maintained in detached wheat leaves during senescence in darkness. Plant Physiol Biochem 40:161–166. doi: 10.1016/S0981-9428(01)01349-3
  • Shang F, Taylor A (1995) Oxidative stress and recovery from oxidative stress are associated with altered ubiquitin conjugating and proteolytic activities in bovine lens epithelial cells. Biochem J 307:297–303
  • Shi C, Xu LL (2009) Characters of cysteine endopeptidases in wheat endosperm during seed germination and subsequent seedling growth. J Integr Plant Biol 51:52–57. doi:10.1111/j.1744-7909. 2008.00778.x
  • Shi C, Rui Q, Xu LL (2009) Enzymatic properties of the 20S proteasome in wheat endosperm and its biochemical characteristics after seed imbibition. Plant Biol 11:849–858. doi:10.1111/ j.1438-8677.2009.00193.x
  • Shringarpure R, Grune T, Davies KJ (2001) Protein oxidation and 20S proteasome-dependent proteolysis in mammalian cells. Cell Mol Life Sci 58:1442–1450. doi:10.1007/PL00000787
  • Shringarpure R, Grune T, Mehlhase J, Davies KJA (2003) Ubiquitin conjugation is not required for the degradation of oxidized proteins by proteasome. J Biol Chem 278:311–318. doi:10.1074/ jbc.M206279200
  • Sun CW, Callis J (1997) Independent modulation of Arabidopsis thaliana polyubiquitin mRNAs in different organs and in response to environmental changes. Plant J 11:1017–1027. doi: 10.1046/j.1365-313X.1997.11051017.x
  • Thompson AR, Vierstra RD (2005) Autophagic recycling: lessons from yeast help define the process in plants. Curr Opin Plant Biol 8:165–173. doi:10.1016/j.pbi.2005.01.013
  • Vranová E, Inzé D, Van Breusegem F (2002) Signal transduction during oxidative stress. J Exp Bot 53:1227–1236. doi:10.1093/jexbot/53.372.1227

Uwagi

PL
Rekord w opracowaniu

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-63ad6aaf-11ee-457c-98c3-7ce20c3612e5
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.