PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2009 | 31 | 5 |

Tytuł artykułu

Reactive oxygen species production and antioxidative defense system in pea root tissues treated with lead ions: mitochondrial and peroxisomal level

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Reactive oxygen species (ROS) production and enzymatic antioxidative system [superoxide dismutase (SOD), catalase (CAT), ascorbate peroxidase (APOX), alternative oxidase (AOX)] in nonphotosynthesizing pea plant cells were investigated. From the roots of pea plants cultivated hydroponically on a Hoagland medium with the addition of 0.1 and 0.5 mM of Pb(NO₃)₂, the three following fractions were isolated by means of a Percoll gradient: cytosol, peroxisomal, and mitochondrial. Lead stress caused H₂O₂ production in these organelles. The mitochondria from pea cell roots were the main site of H₂O₂ production. Intensive stress caused by 0.5 mM of Pb(NO₃)₂ brought about a decrease of H₂O₂ concentration in mitochondria and peroxisomes after 3 days of the exposition, which was due to an increase of CAT activity. The isoenzymatic profile of antioxidative enzymes indicates mitochondrial and peroxisomal localization of MnSOD and cytoplasmic localization of CuSOD. APOX activity was estimated for all three fractions: cytosol, mitochondria, and peroxisomes. Simultaneously, we observed an increased expression of AOX genes on the basis of the amount of mRNA transcript and confirmed it immunologically on the level of synthesized AOX protein (36 kDa). This has been the first evidence of AOX genes expression of which is induced by the treatment of plants with lead ions and it increases along with the concentration of metal.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

31

Numer

5

Opis fizyczny

p.1065-1075,fig.,ref.

Twórcy

autor
  • Department of Biochemistry, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University, Collegium Bilogicum, Umultowska 89, 61-614 Poznan, Poland
  • Department of Molecular and Cellular Biology, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University, Collegium Bilogicum, Umultowska 89, 61-614 Poznan, Poland
  • Department of Biochemistry, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University, Collegium Bilogicum, Umultowska 89, 61-614 Poznan, Poland
autor
  • Department of Biochemistry, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University, Collegium Bilogicum, Umultowska 89, 61-614 Poznan, Poland
  • Department of Biochemistry, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University, Collegium Bilogicum, Umultowska 89, 61-614 Poznan, Poland

Bibliografia

  • Aebi HE (1983) Catalase in vitro. In: Bergmeyer HU (ed) Methods of enzymatic analyses, vol 3. Verlag Chemie, Weinheim, pp 273–282
  • Beauchamp C, Fridovich I (1971) Superoxide dismutase: improved assays and an assay applicable to acrylamide gels. Anal Biochem 44:276–287. doi:10.1016/0003-2697(71)90370-8
  • Becana M, Aparicio-Tejo P, Irigoyen JJ, Sanchez-Diaz M (1986) Some enzymes of hydrogen peroxide metabolism in leaves and root nodules of Medicago sativa. Plant Physiol 82:1169–1171. doi:10.1104/pp.82.4.1169
  • Blokhina O, Chirkova TV, Fagerstedt KV (2001) Anoxic stress leads to hydrogen peroxide formation in plant cells. J Exp Bot 359:1179–1190. doi:10.1093/jexbot/52.359.1179
  • Blokhina O, Virolainen E, Fagerstedt KV (2003) Antioxidants, oxidative damage and oxygen deprivation stress: a review. Ann Bot (Lond) 91:179–194. doi:10.1093/aob/mcf118
  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantitiesof protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254. doi:10.1016/0003-2697(76)90527-3
  • Carriere A, Fernandez Y, Rigoulet M, Penicaud L, Casteilla L (2003) Inhibition of preadipocyte proliferation by mitochondrial reactive oxygen species. FEBS Lett 550:163–167. doi:10.1016/ S0014-5793(03)00862-7
  • Davis BJ (1964) Disc electrophoresis II. Methods and application to human serum proteins. Ann N Y Acad Sci 121:404–427. doi: 10.1111/j.1749-6632.1964.tb14213.x
  • del Rio LA, Sandalio LM, Altomare DA, Zilinskas BA (2003) Mitochondrial and peroxisomal manganese superoxide dismutase: differential expression during leaf senescence. J Exp Bot 54:923–933. doi:10.1093/jxb/erg091
  • Fleury C, Mignotte B, Vayssiere JL (2002) Mitochondrial reactive oxygen species in cell death signaling. Biochimie 84:131–141. doi:10.1016/S0300-9084(02)01369-X
  • Fung RWM, Wang CY, Smith DL, Gross KC, Tian M (2004) MeSA and MeJA increase steady-state transcript levels of alternative oxidase and resistance against chilling injury in sweet peppers (Capsicum annuum L.). Plant Sci 166:711–719. doi: 10.1016/j.plantsci.2003.11.009
  • Gomez JM, Hernandez JA, Jinez A, del Rio LA, Sevilla F (1999) Differential response of antioxidative enzymes of chloroplasts and mitochondria to long-term NaCl stress of pea plants. Free Radic Res 31:11–18. doi:10.1080/10715769900301261
  • Harper ME, Bevilacqua L, Hagopian K, Weindruch R, Ramsey JJ (2004) Ageing, oxidative stress, and mitochondrial uncoupling. Acta Physiol Scand 182:321–331. doi:10.1111/j.1365-201X. 2004.01370.x
  • Jimenez A, Hernandez A, Pastori G, del Rio LA, Sevilla F (1998) Role of the ascorbate-glutathione cycle of mitochondria and peroxisomes in the senescence of pea leaves. Plant Physiol 118:1327–1335. doi:10.1104/pp.118.4.1327
  • Jimenez A, Gomez JM, Navarro E, Sevilla F (2002) Changes in the antioxidative systems in mitochondria during ripening of pepper fruits. Plant Physiol Biochem 40:515–520. doi:10.1016/S0981-9428(02)01424-9
  • Juszczuk I, Malusa E (2001) Oxidative stress during phosphate deficiency in roots of bean plants (Phaseolus vulgaris L.). J Plant Physiol 158:1299–1305. doi:10.1078/0176-1617-00541
  • Juszczuk IM, Tybura A, Rychter AM (2008) Protein oxidation in the leaves and roots of cucumber plants (Cucumi sativus L.) mutant MSC 16 and wild type. J Plant Physiol 165:355–365. doi: 10.1016/j.jplph.2007.06.021
  • Malecka A, Jarmuszkiewicz W, Tomaszewska B (2001) Antioxidative defence to lead stress in subcellular compartments of pea root cells. Acta Biochim Pol 48:687–698
  • Malecka A, Piechalak A, Morkunas I, Tomaszewska B (2008) Accumulation of lead in root cells of Pisum sativum. Acta Physiol Plant 30:629–637. doi:10.1007/s11738-008-0159-1
  • Maxwell DP, Nickels R, McIntosh L (2002) Evidence of mitochondrial involvement in the transduction of signals required for the induction of genes associated with pathogen attack and senescence. Plant J 29:269–279
  • McCabe PC, Finnegan PM, Millar H, Day DA, Whelan J (1998) Differential expression of alternative oxidase genes in soybean cotyledons during postgerminative development. Plant Physiol 118:675–682. doi:10.1104/pp.118.2.675
  • Mittler R, Zilinskas BA (1993) Detection of ascorbate peroxidase activity in native gels by inhibition of the ascorbate-dependent reduction of nitroblue tetrazolium. Anal Biochem 212:540–546. doi:10.1006/abio.1993.1366
  • Mittova V, Theodoulou F, Kiddle G, Volokita M, Tal M, Foyer C, Guy M (2004) Comparison of mitochondrial ascorbate peroxidase in the cultivated tomato, Lycopersicon esculentum, and its wild, salt-tolerant relative, L. pennellii—a role for matrix isoforms in protection against oxidative damage. Plant Cell Environ 27:237–250. doi:10.1046/j.1365-3040.2004.01150.x
  • Mőller IM, Kristensen BK (2004) Protein oxidation in plant mitochondria as a stress indicator. Photochem Photobiol Sci 3:730–735. doi:10.1039/b315561g
  • Nakano Y, Asada K (1981) Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts. Plant Cell Physiol 22:867–880
  • Navrot N, Rouhier N, Gelhaye E, Jacquot JP (2007) Reactive oxygen species generation and antioxidant systems in plant mitochondria. Physiol Plant 129:185–195. doi:10.1111/j.1399-3054. 2006.00777.x
  • Panda SK, Yamamoto Y, Kondo H, Matsumoto H (2008) Mitochondrial alterations related to programmed cell death in tobacco cells under aluminium stress. C R Biol 331:597–610. doi: 10.1016/j.crvi.2008.04.008
  • Parsons HL, Yip JYH, Vanlerberghe GC (1999) Increased respiratory restrictions during phosphate-limited growth in transgenic tobacco cells lacking alternative oxidase. Plant Physiol 121:1309–1320. doi:10.1104/pp.121.4.1309
  • Pourrut B, Perchet G, Silvestre J, Cecchi M, Guiresse M, Pinelli E (2008) Potential role of NADPH-oxidase in early steps of leadinduced oxidative burst in Vicia faba roots. J Plant Physiol 165:571–579. doi:10.1016/j.jplph.2007.07.016
  • Qureshi MI, Israr M, Abdin MZ, IqbalM(2005) Responses of Artemisia annua L. to lead and salt-induced oxidative stress. Environ Exp Bot 53:185–193. doi:10.1016/j.envexpbot.2004.03.014
  • Qureshi MI, Qadir S, Zolla L (2007) Proteomics-based dissection of stress-responsive pathways in plants. J Plant Physiol 164:1239–1260. doi:10.1016/j.jplph.2007.01.013
  • Romero-Puertas M, Corpas FJ, Rodriguez-Serrano M, Gomez M, del Rio LA, Sandalio LM (2007) Differential expression and regulation of antioxidative enzymes by cadmium in pea plants. J Plant Physiol 164:1346–1357. doi:10.1016/j.jplph.2006.06.018
  • Ruley AT, Sharma NC, Sahi SV (2004) Antioxidant defense in a lead accumulating plant, Sesbania drummondii. Plant Physiol Biochem 42:899–906. doi:10.1016/j.plaphy.2004.12.001
  • Sharma P, Dubey RS (2005) Lead toxicity in plants. Braz J Plant Physiol 17:35–52. doi:10.1590/S1677-04202005000100004
  • Ślesak I, Libik M, Karpinska B, Karpinski S, Miszalski Z (2007) The role of hydrogen peroxide in regulation of plant metabolism and cellular signaling in response to environmental stresses. Acta Biochim Pol 54:39–50
  • Słomka A, Libik-Konieczny M, Kuta E, Miszalski Z (2008) Metalliferous and non-metalliferous populations of Viola tricolor represent similar mode of antioxidative response. J Plant Physiol 165:1610–1619. doi:10.1016/j.jplph.2007.11.004
  • Szal B, Drozd M, Rychter AM (2004) Factors affecting determination of superoxide anion generated by mitochondria from barley roots after anaerobiosis. J Plant Physiol 161:1339–1346. doi: 10.1016/j.jplph.2004.03.005
  • Vanlerberghe GC, McIntosh L (1997) Alternative oxidase: from gene to function. Annu Rev Plant Physiol Mol Biol 48:703–734
  • Vianello A, Zancani M, Peresson C, Petrussa E, Casolo V, Krajnakova J, Patui S, Braidot E, Marci F (2007) Plant mitochondrial pathway leading to programmed cell death. Physiol Plant 129:242–252. doi:10.1111/j.1399-3054.2006.00767.x
  • Woodbury W, Spencer AK, Stahmann MA (1971) An improved procedure using ferricyanide for detecting catalase isozymes. Ann Biochem 44:301–305. doi:10.1016/0003-2697(71)90375-7
  • Yamamoto Y, Kobayashi Y, Rama Devi S, Rikiishi S, Matsumoto H (2002) Aluminium toxicity is associated with mitochondrial dysfunction and the production of reactive oxygen species in plant cells. Plant Physiol 128:63–72. doi:10.1104/pp.010417

Uwagi

Rekord w opracowaniu

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-63ace998-db6e-4c83-a312-db4e2715b09f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.