PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2019 | 28 | 4 |
Tytuł artykułu

Mass transport of nitrate in soil by utilizing the optimized diffusion cell and emission-transmission-immission concept

Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Quantification methods of mass transport of contaminants such as nitrate into groundwater are still inefficient due to lack of knowledge about the parameters governing the transport process. Thus, in this research, a new methodology called optimized diffusion cell (ODC) setup was established to investigate nitrate input into groundwater through an unsaturated zone. This experimental modeling setup mimics the emission-transmission-immission (ETI) concept, which allows for quantification of input and output nitrate fluxes under realistic conditions. Three various nitrate concentrations were added to undisturbed soil samples of 1 cm thickness. The ODC setup was established to minimize the advective transport of nitrate in sandy soil samples due to high permeability. Outcomes revealed that a sorbed amount of nitrate was little due to advective transport compared to that carried out by diffusion. Additionally, for the whole analyzed soil samples of different soil classes, the amount of sorbed nitrate by advection did not exceed 1% of the total sorbed amount. On average, 30% of total nitrate mass input was sorbed. Results of the ODC setup prove its efficiency to simulate nitrate mass transport within the enclosed soil samples. Such findings can be used to predict endurable risk of nitrate transport to groundwater and to analyze sorption isotherms.
Słowa kluczowe
EN
Wydawca
-
Rocznik
Tom
28
Numer
4
Opis fizyczny
p.2553-2563,fig.,ref.
Twórcy
  • Department of Water Resources and Environmental Management, Al-Balqa Applied University, Al-Salt 19117, Jordan
autor
  • Department of Engineering Geology and Hydrogeology, RWTH Aachen University, Aachen 52064, Germany
Bibliografia
  • 1. LI Z. Use of surfactant modified zeolite as fertilizer carriers to control nitrate release. Microporous Mesoporous Mater. 61 (1-3), 181, 2003.
  • 2. MCLAY C.D.A., DRAGTEN R., SPARLING G., SELVARAJAH N. Predicting groundwater nitrate concentration in a region of mixed agricultural land use: A comparison of three approaches. Environ. Pollut. 115 (2), 191, 2001.
  • 3. NDALA S.M., SCHOLES M.C., FEY M.V. Soil properties and processes driving the leaching of nitrate in the forested catchments of the eastern escarpment of South Africa. Forest Ecol. Manag. 236 (2-3), 142, 2006.
  • 4. LEVY J., CHESTERS G., GUSTAFSONS D.P., READ H.W. Assessing aquifer susceptibility to and severity of atrazine contamination at field site in south-central Wisconsin, USA. Hydrogeol. J. 6, 489, 1998.
  • 5. MARTINEZ-VILLEGAS N., FLORES-VELEZ L.M., DOMINGUEZ O. Sorption of lead in soil as a function of pH: A study case in Mexico. Chemosphere. 57 (10), 1537, 2004.
  • 6. QAFOKU N.P., SUMNER M.E. Adsorption and desorption of indifferent ions in variable charge subsoils: The possible effect of particle interaction on the counter-ion charge density. Soil Sci. Soc. Am. J. 66, 1231, 2002.
  • 7. EICK M.J., BRADY W.D., LYNCH C.K. Charge properties and nitrate adsorption of some acid south-eastern soils. J. Environ. Qual. 28 (1), 138, 1999.
  • 8. FLINT C.M., HARRISON R.B., STRAHM B.D., ADAMS A.B. Nitrogen leaching from Douglas-fir forests after urea fertilization. J. Environ. Qual. 37 (5), 1781, 2008.
  • 9. KATOU H., CLOTHIER B.E., GREEN S.R. Anion transport involving competitive adsorption during transient water flow in an andisol. Soil Sci. Soc. Am. J. 60 (5), 1368, 1996.
  • 10. REMYA N., AZZAM R. Influence of organic matter and solute concentration on nitrate sorption in batch and diffusion-cell experiments. Bioresour. Technol. 102 (9), 5283, 2011.
  • 11. CAHN M.D., BOULDIN D.R., CRAVO M.S. Nitrate sorption in the profile of an acid soil. Plant Soil. 143 (2), 179, 1992.
  • 12. OZTURK N., BEKTAS T.E. Nitrate removal from aqueous solution by adsorption onto various materials. J. Hazard. Mater. 112 (1-2), 155, 2004.
  • 13. AZZAM R., LAMBARKI M. Evaluation concept and testing method for heavy metal contaminant transport in the underground. Proceedings of the First EurEnGeo IAEG Conference, Belgium. 316, 2004.
  • 14. SHACKELFORD C.D., DANIEL D.E., LILJESTAND M. Diffusion of inorganic chemical species in compacted clay soil. J. Contam. Hydrol. 4, 241, 1989.
  • 15. MARAQA M.A. Prediction of mass-transfer coefficient for solute transport in porous media. J. Contam. Hydrol. 53 (1-2), 153, 2001.
  • 16. KUMAR M., PHILIP L. Adsorption and desorption characteristics of hydrophobic pesticide endosulfan in four Indian soils. Chemosphere. 62 (7), 1064, 2006.
  • 17. LEE M.J., HWANG S.I., RO H.M. Interpreting the effect of soil texture on transport and removal of nitrate-N in saline coastal tidal flats under steady-state flow condition. Cont. Shelf Res. 84, 35, 2014.
  • 18. PRADO B., DUWIG C., ETCHEVERS J., GAUDET J.P., VAUCLIN M. Nitrate fate in a Mexican andosol: Is it affected by preferential flow? Agric. Water Manage. 98 (9), 1441, 2011.
  • 19. AZZAM R. Stofftransportprozesse in natürlichen Dichtungsstoffen unter Berücksichtigung der Verdichtbarkeit sowie des Einflusses strukturverändernder Chemikalien auf die Materialeigenschaften. Mitteilungen zur Ingenieurgeologie und Hydrogeologie, RWTH Aachen University. 49, 87, 1993.
  • 20. LAMBARKI M. Entwicklung eines naturnahen Bewertungsverfahrens für die Gefährdungsabschätzung von Altlastverdachtsflächen und Verwertungsmaterialien - ein Beitrag zum Grundwasserschutz. Mitteilungen zur Ingenieurgeologie und Hydrogeologie, RWTH Aachen University. 93, 21, 2006.
  • 21. ALJAZZAR T., AL-QINNA M. Assessment of nitrate transport parameters using the Advection-Diffusion Cell. Environ. Sci. Pollut. Res. Int. 23 (22), 23145, 2016.
  • 22. ALJAZZAR T. Adjustment of DRASTIC vulnerability index to assess groundwater vulnerability for nitrate pollution using the advection diffusion cell. Dissertation, RWTH Aachen University. 23, 2010.
  • 23. JOHNSON R.L., PALMER C.D., FISH W. Subsurface chemical processes: III Transport and Fate of Contaminants in the Subsurface. U.S. Environmental Protection Agency, Center for Environmental Research Information, Cincinnati, OH, and Robert S. Kerr Environmental Research Laboratory, Ada, OK, EPA/ 625/4-89/019, U.S. 1989.
  • 24. AL-QASMI M., RAUT N., TALEBI S., AL-RAJHI S., AL-BARWANI T. A review of effect of light on microalgae growth. Proceedings of the World Congress on Engineering, U.K. 1, 2012.
  • 25. BUZEK F., KADLECOVA R., JACKOVA I., LNENIKOVA Z. Nitrate transport in the unsaturated zone: A case study of the riverbank filtration system Karany, Czech Republic. Hydrol. Processes 26 (5), 645, 2012.
  • 26. SCHULZE-MAKUCH D., CHERKAUER D.S. Variations in hydraulic conductivity with scale of measurement during aquifer tests in heterogeneous, porous, carbonate rocks. Hydrogeol. J. 6 (2), 209, 1998.
  • 27. SOLLINS P., GREGG J.W. Soil organic matter accumulation in relation to changing soil volume, mass, and structure: Concepts and calculations. Geoderma. 301, 60, 2017.
  • 28. SCHWANTES D., GONCALVES A.C., SCHONS D.C., VEIGA T.G., DIEL R.C., SCHWANTES V. Nitrate adsorption using sugar cane bagasse physicochemically changed. Journal of Agriculture and Environmental Sciences. 4 (1), 51, 2015.
  • 29. NOR N.M., LAU C.L., LEE K.T., MOHAMED A.R. Synthesis of activated carbon from lignocellulosic biomass and its applications in air pollution control-A review. J. Environ. Chem. Eng. 1 (4), 658, 2013.
  • 30. RAMA KRISHNA K., PHILIP L. Adsorption and desorption characteristics of lindane, carbofuran and methyl parathion on various Indian soils. J. Hazard. Mater. 160 (2-3), 559, 2008.
  • 31. NIE X., LI Z., HUANG J., LIU L., XIAO H., LIU C., ZENG G. Thermal stability of organic carbon in soil aggregates as affected by soil erosion and deposition. Soil Tillage Res. 175, 82, 2018.
  • 32. FEDER F., BOCHU V., FINDELING A., DOELSCH E. Repeated pig manure applications modify nitrate and chloride competition and fluxes in a Nitisol. Sci. Total Environ. 511, 241, 2015.
  • 33. CHINTALA R., MOLLINEDO J., SCHUMACHER T.E., PAPIERNIK S.K., MALO D.D., CLAY D.E., KUMAR S., GULBRANDSON D.W. Nitrate sorption and desorption in biochars from fast pyrolysis. Microporous and Mesoporous Mater. 179, 250, 2013.
  • 34. HAMDI W., GAMAOUN F., PELSTER D.E., SEFFEN M. Nitrate sorption in an agricultural soil profile. Appl. Environ. Soil Sci. 2013, 1, 2013.
  • 35. MOHSENIPOUR M., SHAHID S., EBRAHIMI K. Nitrate adsorption on clay kaolin: Batch tests. Journal of Chemistry. 2015, 1, 2015.
  • 36. KOOKANA R.S., AHMAD R., FARENHORST A. Sorption of pesticides and its dependence on soil properties: Chemometrics approach for estimating sorption. ACS Symposium Series; 1174, Chapter 12, 221, 2014.
  • 37. YUAN C., MOSLEY L.M., FITZPATRICK R., MARSCHNER P. Amount of organic matter required to induce sulfate reduction in sulfuric material after re-flooding is affected by soil nitrate concentration. J. Environ. Manage. 151, 439, 2015.
  • 38. LEHMANN J., JOSEPH S. (EDs.). Biochar for environmental management: Science, technology and implementation. Routledge, 2015.
  • 39. CHIEN S.C., CHEN S., HUANG K. Arsenic of adsorption characteristics in Taiwan soils. Journal of Applied Science and Engineering. 18 (4), 323, 2015.
  • 40. FALAGAS M.E., THOMAIDIS P.C., KOTSANTIS I.K., SGOUROS K., SAMONIS G., KARAGEORGOPOULOS D.E. Airborne hydrogen peroxide for disinfection of the hospital environment and infection control: A systematic review. Journal of Hospital Infection. 78 (3), 171, 2011.
  • 41. 41. LOO A.E., HALLIWELL B. Effects of hydrogen peroxide in a keratinocyte-fibroblast co-culture model of wound healing. Biochem. Biophys. Res. Commun. 423 (2), 255, 2012.
  • 42. VIJAYAKUMAR R., KANNAN V.V., SANDLE T., MANOHARAN C. In vitro antifungal efficacy of biguanides and quaternary ammonium compounds against cleanroom fungal isolates. PDA J. Pharm. Sci. Technol. 66 (3), 237, 2012.
  • 43. BLICHER-MATHIESEN G., ANDERSEN H.E., LARSEN S.E. Nitrogen field balances and suction cup-measured N leaching in Danish catchments. Agric. Ecosyst. Environ. 196, 72, 2014.
  • 44. QAFOKU N.P., SUMNER M.E., RADCLIFFE D.E. Anion transport in columns of variable charge subsoils: Nitrate and chloride. J. Environ. Qual. 29 (2), 484, 2000.
  • 45. FETTER C.W. Contaminant hydrogeology. Second edition, Upper Saddle River, N.J., Prentice Hall, U.S., 27, 1999.
  • 46. SPERELAKIS N. Cell physiology sourcebook: Essentials of membrane biophysics. Third edition, Academic Press, Elsevier, 448, 2012.
  • 47. ZIARANI A.S., AGUILERA R., CLARKSON C.R. Investigating the effect of sorption time on coalbed methane recovery through numerical simulation. Fuel. 90 (7), 2429, 2011.
  • 48. GAO H., MATYKA M., LIU B., KHALILI A., KOSTKA J.E., COLLINS G., JANSEN S., HOLTAPPELS M., JENSEN M.M., BADEWIEN T.H., BECK M., GRUNDWALD M., DE BEER D., LAVIK G., KUYPERS M.M.M. Intensive and extensive nitrogen loss from intertidal permeable sediments of the Wadden Sea. Limnol. Oceanogr. 57 (1), 185, 2012.
  • 49. KLEINMAN P.J.A. The persistent environmental relevance of soil phosphorus sorption saturation. Curr. Pollut. Rep. 3 (2), 141, 2017.
  • 50. REMOUNDAKI E., VASILEIOU E., PHILIPPOU A., PERRAKI M., KOUSI P., HATZIKIOSEYIAN A., STAMATIS G. Groundwater deterioration: The simultaneous effects of intense agricultural activity and heavy metals in soil. Proceedings of the Second EwaS 2016: International Conference on Efficient & Sustainable Water Systems Management toward Worth Living Development, Procedia Eng. 162, 545, 2016.
  • 51. KELEPERTZIS E., GALANOS E., MITSIS I. Origin, mineral speciation and geochemical baseline mapping of Ni and Cr in agricultural topsoils of Thiva Valley (central Greece). J. Geochem. Explor. 125, 56, 2013.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.agro-63491c4b-e988-497e-bb85-aff7b4b7a2f3
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.