EN
Schima superba and Pinus massoniana distributed over large areas in southern China both are dominant species at Dinghushan Biosphere Reserve. In the present study, the changes of chlorophyll fluorescence and xanthophyll cycle in the leaves of S. superba and P. massoniana exposed to simulated acid rain (SAR) were measured. When exposed to high light, the PSII photochemistry efficiency (Fv/Fm), efficiency of energy conversion in PSII (ΦPSII) and photochemical quenching (qP) of both S. superba and P. massoniana all decreased when acidity of SAR increased. Regarding non-photochemical quenching (qN), S. superba exposed to SAR had higher value than control plants, but there was no significant difference between the respective seedlings of P. massoniana. As for xanthophyll cycle of the two plant species, the leaves of S. superba exposed to SAR showed a higher content of carotenoids and a higher ability to convert violaxanthin to zeaxanthin than leaves of P. massoniana, which was consistent with S. superba exhibiting a stronger resistance to high light than P. massoniana. Although both species were susceptible to acid rain as shown by our results, P. massoniana was more susceptible compared to S. superba. These results provide an insight into how to protect the forest ecosystem at Dinghushan Biosphere Reserve.