PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2016 | 65 | 1 |

Tytuł artykułu

The functions of effector proteins in Yersinia virulence

Autorzy

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Yersinia species are bacterial pathogens that can cause plague and intestinal diseases after invading into human cells through the Three Secretion System (TTSS). The effect of pathogenesis is mediated by Yersinia outer proteins (Yop) and manifested as down-regulation of the cytokine genes expression by inhibiting nuclear factor-κ-gene binding (NF-κB) and mitogen-activated protein kinase (MAPK) pathways. In addition, its pathogenesis can also manipulate the disorder of host innate immune system and cell death such as apoptosis, pyroptosis, and autophagy. Among the Yersinia effector proteins, YopB and YopD assist the injection of other virulence effectors into the host cytoplasm, while YopE, YopH, YopJ, YopO, and YopT target on disrupting host cell signaling pathways in the host cytosols. Many efforts have been applied to reveal that intracellular proteins such as Rho-GTPase, and transmembrane receptors such as Toll-like receptors (TLRs) both play critical roles in Yersinia pathogenesis, establishing a connection between the pathogenic process and the signaling response. This review will mainly focus on how the effector proteins of Yersinia modulate the intrinsic signals in host cells and disturb the innate immunity of hosts through TTSS.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

65

Numer

1

Opis fizyczny

p.5-12,fig.,ref.

Twórcy

autor
  • Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, College of Life Sciences, Hubei University, Wuhan, China
autor
  • Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, College of Life Sciences, Hubei University, Wuhan, China
autor
  • Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, College of Life Sciences, Hubei University, Wuhan, China
autor
  • Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, College of Life Sciences, Hubei University, Wuhan, China
autor
  • Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, College of Life Sciences, Hubei University, Wuhan, China
autor
  • Research and Development Center, Hubei Tobacco China Industrial Company, Wuhan, China
autor
  • Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, College of Life Sciences, Hubei University, Wuhan, China

Bibliografia

  • Adkins I., M. Koberle, S. Grobner, E. Bohn, I.B. Autenrieth andS. Borgmann. 2007. Yersinia outer proteins E, H, P, and T differentially target the cytoskeleton and inhibit phagocytic capacity of dendritic cells. Int. J. Med. Microbiol. 297: 235–244.
  • Aepfelbacher M. and J. Heesemann. 2001. Modulation of Rho GTPases and the actin cytoskeleton by Yersinia outer proteins (Yops). Int. J. Med. Microbiol. 291: 269–276.
  • Amedei A., E. Niccolai, L. Marino and M.M. D’Elios. 2011. Role of immune response in Yersinia pestis infection. J. Infect. Dev. Ctries. 5(9): 628–639.
  • Andor A., K. Trulzsch, M. Essler, A. Wiedemann, A. Roggen-Kamp, J. Heesemann and M. Aepfelbacher. 2001. YopE of Yersinia, a GAP for Rho-GTPases, selectively modulates Rac-dependent actin structures in endothelial cells. Cell Microbiol. 3: 301–310.
  • Bahta M. and T.R. Burke. 2012. Yersinia pestis and approaches to targeting its outer protein H protein-tyrosine phosphatase (YopH). Curr. Med. Chem. 19(33): 5726–5734.
  • Bergsbaken T., S.L. Fink and B.T. Cookson. 2009. Pyroptosis: host cell death and inflammation. Nat. Rev. Micro. 7: 99–109.
  • Bergsbaken T., S.L. Fink, A.B. den Hartigh, W.P. Loomis andB.T. Cookson. 2011. Coordinated host responses during pyroptosis: caspase-1-dependent lysosome exocytosis and inflammatory cytokine maturation. J. Immunol. 187: 2748–2754.
  • Bliska J.B. 2000. Yop effectors of Yersinia spp. and actin rearrangements. Trends. Microbiol. 8(5): 205–208.
  • Bliska J.B. 2006. Yersinia inhibits host signaling by acetylating MAPK kinases. ACS. Chem. Biol. 1(6): 349–351.
  • Brodsky I.E., N.W. Palm, S. Sadanand, M.B. Ryndak, F.S. Sutterwala, R.A. Flavell, J.B. Bliska and R. Medzhitov. 2010. A Yersinia effector protein promotes virulence by preventing inflammasome recognition of the type III secretion system. Cell. Host. Microbe. 7: 376–387.
  • Broz P., J. von Moltke, J.W. Jones, R.E. Vance and D.M. Monack. 2010. Differential requirement for Caspase-1 autoproteolysis in pathogen-induced cell death and cytokine processing. Cell. Host. Microbe. 8: 471–483.
  • Cambronne E.D., J.A. Sorg and O. Schneewind. 2004. Binding of SycH chaperone toYscM1 and YscM2 activates effector yop expression in Yersinia enterocolitica. J. Bacteriol. 186: 829–841.
  • Chen Y. and D.M. Anderson. 2011. Expression hierarchy in the Yersinia type III secretion system established through YopD recognition of RNA. Mol. Microbiol. 80(4): 966–980.
  • Chung L.K., N.H. Philip, V.A. Schmidt, A. Koller, T. Stowlg,R.A. Flavell, I.E. Brodsky and J.B. Bliska. 2014. IQGAP1 is important for activation of Caspase-1 in macrophages and is targeted by Yersinia pestis type III effector YopM. mBio. 5(4): e01402–14.
  • Dessein R., M. Gironella, C. Vignal, L. Peyrin-Biroulet, H. Sokok, T. Secher, S. Lacas-Gervais, J.J. Gratadoux, F. Lafont, J.C. Dagorn and others. 2009. Toll-like receptor 2 is critical for induction of Reg3b expression and intestinal clearance of Yersinia pseudotuberculosis. Gut. 58: 771–776.
  • Dewoody R., P.M. Merritt, A.S. Houppert and M.M. Marketon. 2011. YopK regulates the Yersinia pestis type III secretion system from within host cells. Mol. Microbiol. 79(6): 1445–1461.
  • Dewoody R., P.M. Merritt, A.S. Houppert and M.M. Marketon. 2013. Regulation of the Yersinia type III secretion system: traffic control. Front. Cell Infect. Mi. 3(4): 1–13.
  • Edqvist P.J., M. Aili, J. Liu and M.S. Francis. 2007. Minimal YopB and YopD translocator secretion by Yersinia is sufficient for Yop-effector delivery into target cells. Microbes Infect. 9: 224–233.
  • Fallman M., K. Andersson, S. Hakansson, K.E. Magnusson,O. Stendahl and H. Wolf-Watz. 1995. Yersinia pseudotuberculosis inhibits Fc receptor-mediated phagocytosis in J774 cells. Infect. Immun. 63: 3117–3124.
  • Galindo C.L., J.A. Rosenzweig, M.L. Kirtley and A.K. Chopra. 2011. Pathogenesis of Yersinia enterocolitica and Yersinia pseudotuberculosisin Human Yersiniosis. J. Pathog. 2011: 1–16.
  • Groves E., K. Rittinger, M. Amstutz, S. Berry, D.W. Holden, G.R. Cornelis and E. Caron. 2010. Sequestering of Rac by the Yersinia effector YopO blocks Fcgamma receptor-mediated phagocytosis. J. Biol. Chem. 285: 4087–4098.
  • Hamid N., A. Gustavsson, K. Andersson, K. McGee, C. Persson, C.E. Rudd and M. Fallman. 1999. YopH dephosphorylates Cas and Fyn-binding protein in macrophages. Microb. Pathog. 27: 231–242.
  • Hajjar A.M., R.K. Ernst, E.S.III Fortuno, A.S. Brasfield, C.S. Yam, L.A. Newlon, T.R. Kollmann, S.I. Miller and C.B. Wilson. 2012. Humanized TLR4/MD-2 mice reveal LPS recognition differentially impacts susceptibility to Yersinia pestis and Salmonella enterica. PLoS Pathog. 8(10): e1002963.
  • Hentschke M., L. Berneking, C.B. Campos, F. Buck, K. Ruckdeschel and M. Aepfelbacher. 2010. Yersinia virulence factor YopM induces sustained RSK activation by interfering with dephosphorylation. PLoS ONE. 5(10): e13165.
  • Holmstrom A., R. Rosqvist, H. Wolf-Watz and A. Forsberg. 1995. Virulence plasmid-encoded YopK is essential for Yersinia pseudotuberculosis to cause systemic infection in mice. Infect. Immun. 63: 2269–2276.
  • Jessen D.L., P. Osel-Owusu, M. Toosky, W. Roughead, D.S. Bradley and M.L. Nilles. 2014. Type III secretion needle proteins induce cell signaling and cytokine secretion via toll-like receptors. Infect. Immunity. 82(6): 2300–2309.
  • Jorgensen I. and E.A. Miao. 2012. YopM puts Caspase-1 on ice. Cell Host. Microbe. 12(6): 737–738.
  • Jung C., U. Meinzer, N. Montcuquet, E. Thachil, D. Chateau,R. Thiebaut, M. Roy, Z. Alnabhani, D. Berrebi, M. Dussaillant and others. 2012. Yersinia pseudotuberculosis disrupts intestinal barrier integrity through hematopoietic TLR-2 signaling. J. Clin. Invest. 122(6): 2239–2251.
  • Kerschen E.J., D.A. Cohen, A.M. Kaplan and S.C. Straley. 2004. The plague virulence protein YopM targets the innate immune response by causing a global depletion of NK cells. Infect. Immun. 72(8): 4589–4602.
  • LaRock C.N. and B.T. Cookson. 2012. The Yersinia virulence effector YopM binds caspase-1 to arrest inflammasome assembly and processing. Cell Host. Microbe. 12(6): 799–805.
  • Luigi F. and N. Gabriel. 2012. Orchestrating Inflammasomes.Science 337: 1299–1230.
  • McDonald C., P.O. Vacratsis, J.B. Bliska and J.E. Dixon. 2003. The Yersinia virulence factor YopM forms a novel protein complex with two cellular kinases. J. Biol. Chem. 278(20): 18514–18523.
  • Meinzer U., F. Barreau, S. Esmiol-Welterlin, C. Jung, C. Villard,T. Legar, S. Ben-Mkaddem, D. Berrebi, M. Dussaillant, Z. Alnabhani and others. 2012. Yersinia pseudotuberculosis effector YopJ subverts the Nod2/RICK/TAK1 pathway and activates Caspase-1 to induce intestinal barrier dysfunction. Cell Host and Microbe. 11: 337–351.
  • Monack D.M., J. Mecsas, D. Bouley and S. Falkow. 1998. Yersinia-induced apoptosis in vivo aids in the establishment of a systemic infection of mice. J. Exp. Med. 188: 2127–2137.
  • Montager C., C. Arquint and G.R. Cornelis. 2011. Translocators YopB and YopD from Yersinia enterocolitica form a multimeric integral membrane complex in eukaryotic cell membranes. J. Bacteriol. 193(24): 6923–69238.
  • Mukherjee S., G. Keitany, Y. Li, Y. Wang, H.L. Ball, E.J. Goldsmith and K. Orth. 2006. Yersinia YopJ acetylates and inhibits kinase activation by blocking phosphorylation. Science. 312(5777): 1211–1214.
  • Mukherjee S. and K. Orth. 2008. In vitro signaling by MAPK and NFκB pathways inhibited by Yersinia YopJ. Methods. Enzymol. 438: 343–353.
  • Navarro L., A. Koller, R. Nordfelth, H. Wolf-Watz, S. Taylor and J.E. Dixon. 2007. Identification of a molecular target for the Yersinia protein kinase A. Mol. Cell. 26: 465–477.
  • Paquette N., J. Conlon, C. Sweet, F. Rus, L. Wildon, A. Pereira, C.V. Rosadini, N. Goutagny, A.N. Weber, W.S. Lane and others.2012. Serine/threonine acetylation of TGFβ-activated kinase (TAK1) by Yersinia pestis YopJ inhibits innate immune signaling. Proc. Natl. Acad. Sci. 109(31): 12710–12715.
  • Persson C., R. Nordfelth, K. Andersson, A. Forsberg, H. Wolf-Watz and M. Fallman. 1999. Localization of the Yersinia PTPase to focal complexes is an important virulence mechanism. Mol. Microbiol. 33: 828–838.
  • Philip N.H. and I.E. Brodsky. 2012. Cell death programs in Yersinia immunity and pathogenesis. Front. Cell. Infect. Mi. 2(149): 1–7.
  • Philip N.H., C.P. Dillon, A.G. Snyder, P. Fitzgerald, M.A. Wynosky--Dolfi, E.E. Zwack, B. Hu, L. Fitzgerald, E.A. Mauldin, A.M. Copenhaver and others. 2014. Caspase-8 mediates caspase-1 processing and innate immune defense in response to bacterial blockade of NF-κB and MAPK signaling. Proc. Natl. Acad. Sci. 111(20): 7385–7390.
  • Prehna G., M.I. Ivanov, J.B. Bliska and C.E. Stebbins. 2006. Yersinia virulence depends on mimicry of host Rho-family nucleotide dissociation inhibitors. Cell. 26: 869–880.
  • Rimpilainen M., A. Forsberg and H. Wolf-Watz. 1992. Anovel protein, LcrQ, involved in the low-calcium response of Yersinia pseudotuberculosis shows extensive homology to YopH. J. Bacteriol. 174: 3355–3363.
  • Ruckdeschel K., A. Deuretzbacher and R. Haase. 2008. Crosstalk of signalling processes of innate immunity with Yersinia Yop effector functions. Immunobiology. 213: 261–269.
  • Ruckdeschel K., A. Roggenkamp, S. Schubert and J. Heesemann. 1996. Differential contribution of Yersinia enterocolitica virulence factors to evasion of microbicidal action of neutrophils. Infect. Immun. 64: 724–733.
  • Ruiz-Bravo A., E. Moreno and M. Jimenez-Valera. 2001. Intestinal infection of BALB/c mice with Yersinia enterocolitica O9 causes major modifications in phenotype and functions of spleen cells. Microbiology. 147: 3165–3169.
  • Schmidt G. 2011. Yersinia enterocolitica outer protein T (YopT). Eur. J. Cell. Biol. 90: 955–958.
  • Shao F., P.M. Merritt, Z. Bao, R.W. Innes and J.E. Dixon. 2002. A Yersinia effector and a Pseudomonas a virulence protein definea family of cysteine proteases functioning in bacterial pathogenesis. Cell. 109: 575–588.
  • Straley S.C. and W.S. Bowmer. 1986. Virulence genes regulated at the transcriptional level by Ca2+ in Yersinia pestis include structural genes for outer membrane proteins. Infect. Immun. 51: 445–454.
  • Swietnicki W., B.S. Powell and J. Goodin. 2005. Yersinia pestis Yop secretion protein F: Purification, characterization, and protective efficacy against bubonic plague. Protein. Expres. Purif. 42: 166–172.
  • Trcek J., M.F. Oellerich, K. Niedung, F. Ebel, S. Freund andK. Trulzsch. 2011. Gut proteases target Yersinia invasin in vivo. BMC Res. Notes. 4: 129.
  • Viboud G.I. and J.B. Bliska. 2001. A bacterial type III secretion system inhibits actin polymerization to prevent pore formation in host cell membranes. EMBO J. 20: 5373–5382.
  • Viboud G.I. and J.B. Bliska. 2005. Yersinia outer proteins: role in modulation of host cell signaling responses and pathogenesis. Annu. Rev. Microbiol. 59: 69–89.
  • Vladimer G.I., D. Weng, S.W. Montminy Paquette, S.K. Vanaja,V.A.K. Rathinam, M.H. Aune, J.E. Conlon, J.J. Burbage, M.K. Proulx, Q. Liu and others. 2012. The NLRP12 inflammasome recognizes Yersinia pestis. Immunity 37(1): 96–107.
  • von Moltke J., N.J. Trinidad, M. Moayeri, A.F. Kintzer, S.B. Wang, N. van Rooijen, C.R. Brown, B.A. Krantz, S.H. Leppla, K. Gronert and R.E. Vance. 2012. Rapid induction of inflammatory lipid mediators by the inflammasome in vivo. Nature 490(7418): 107–111.
  • Wilharm G., W. Neumayer and J. Heesemann. 2003. Recombinant Yersinia enterocolitica YscM1 andYscM2: homodimer formation andsusceptibility to thrombin cleavage. Protein. Expres. Purif. 31: 167–172.
  • Zheng T.S., S.F. Schlosser, T. Dao, R. Hingorani, N. Crispe,J.L. Boyer and R.A. Flavell. 1998. Caspase-3 controls both cytoplasmic and nuclear events associated with Fas-mediated apoptosis in vivo. Proc. Natl. Acad. Sci. USA 95: 13618–13623.
  • Zheng Y., S. Lilo, P. Mena and J.B. Bliska. 2012. YopJ-induced caspase-1 activation in Yersinia-infected macrophages: independent of apoptosis, linked to necrosis, Dispensable for innate host defense. PLoS ONE. 7(4): e36019.
  • Zhou H., D.M. Monack, N. Kayagaki, I. Wertz, J. Yin, B. Wolf and V.M. Dixit. 2005. Yersinia virulence factor YopJ acts as a deubiquitinase to inhibit NF-κB activation. J. Exp. Med. 202(10): 1327–1332.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-62fa0290-f2a1-4c33-8ff2-a7072e27099c
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.