PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2019 | 28 | 3 |

Tytuł artykułu

Effects of variable sulfur supply on the accumulation, subcellular distribution, and chemical forms of cadmium in Hydrilla verticillata

Autorzy

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Indoor experiments were performed to determine the accumulation, subcellular distribution, and chemical forms of Cd at five S levels in Hydrilla verticillata. The Cd content increased from 1.229 mg/g to 3.329 mg/g in leaves, and decreased from 2.794 mg/g to 1.023 mg/g in roots, respectively. Excess S supply stimulated Cd assimilation in leaves as Cd accumulation was inhibited in roots. The Cd content in leaves at subcellular levels revealed that Cd was stored mainly in the soluble fraction (71.9-88.2%), and in small quantities in the cell wall (6.1-22.4%) and cell organelles (4.8-6.9%). As S increased, the Cd content in leaf soluble fractions and cell walls increased remarkably. The content of NaCl-extracted Cd in leaves increased as S supply increased, and this parameter was much higher than that of other Cd forms. In leaves, the Cd concentrations in the cell walls were significantly correlated with the chemical forms extracted by HAc, HCl, and NaCl, with correlation coefficients of 0.985, 0.964, and 0.957, respectively. The high correlation indicated that Cd in soluble fractions or cell walls was mainly in the form of pectates/protein, phosphate, and oxalate. The application of S alleviated Cd-induced oxidative stress by increasing the proline accumulation. Furthermore, sulfhydryl proteins such as glutathione and cysteine may play a crucial role in the reversal of Cd-induced oxidative stress.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

28

Numer

3

Opis fizyczny

p.1255-1265,fig.,ref.

Twórcy

autor
  • College of Environmental Sciences and Engineering, Xiamen University of Technology, Xiamen, China
autor
  • College of Environmental Sciences and Engineering, Xiamen University of Technology, Xiamen, China
autor
  • College of Environmental Sciences and Engineering, Xiamen University of Technology, Xiamen, China
autor
  • College of Environmental Sciences and Engineering, Xiamen University of Technology, Xiamen, China
autor
  • Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, China

Bibliografia

  • 1. TOROK A., GULYAS Z., SZALAI G., KOCSY G., MAJDIK C. Phytoremediation capacity of aquatic plants is associated with the degree of phytochelatin polymerization, J. Hazard. Mater. 299, 371, 2015.
  • 2. ISIAM M. S., SAITO T., KURASAKI M. Phytofiltration of arsenic and cadmium by using an aquatic plant, Micranthemum umbrosum: Phytotoxicity, uptake kinetics, and mechanism, Ecotox. Environ. Safe. 112, 193, 2015.
  • 3. MERA R., TORRES E., ABALDE J. Influence of sulphate on the reduction of cadmium toxicity in the microalga Chlamydomonas moewusii, Ecotox. Environ. Safe. 128, 236, 2016.
  • 4. CHEN S., NICHOLS K.M., POYNTON H.C., SEPULVEDA M.S. MicroRNAs are involved in cadmium tolerance in Daphnia pulex, Aquat. Toxicol. 175, 241, 2016.
  • 5. XU Q., MIN H., CAI S., FU Y., SHA S., XIE K., DU K. Subcellular distribution and toxicity of cadmium in Potamogeton crispus L., Chemosphere 89 (1), 114, 2012.
  • 6. CALDERON B., FULLANA A. Heavy metal release due to aging effect during zero valent iron nanoparticles remediation, Water Res. 83, 1, 2015.
  • 7. MALEKI H. Recent advances in aerogels for environmental remediation applications: A review, Chem. Eng. J. 300, 98, 2016.
  • 8. BAHEMMAT M., FARAHBAKHSH M., KIANIRAD M. Humic substances-enhanced electroremediation of heavy metals contaminated soil, J. Hazard. Mater. 312, 307, 2016.
  • 9. YIN H., ZHU J. In situ remediation of metal contaminated lake sediment using naturally occurring, calcium-rich clay mineral-based low-cost amendment, Chem. Eng. J. 285, 112, 2016.
  • 10. MANZATU C., NAGY B., CECCARINI A., IANNELLI R., GIANNARELLI S., MAJDIK C. Laboratory tests for the phytoextraction of heavy metals from polluted harbor sediments using aquatic plants, Mar. Pollut. Bull. 101 (2), 605, 2015.
  • 11. WANG Z., YAO L., LIU G., LIU W. Heavy metals in water, sediments and submerged macrophytes in ponds around the Dianchi Lake, China, Ecotox. Environ. Safe. 107, 200, 2014.
  • 12. RASCIO N., NAVARI-IZZO F. Heavy metal hyperaccumulating plants: How and why do they do it? And what makes them so interesting?, Plant Sci. 180 (2), 169, 2011.
  • 13. GARCIA-GARCIA J.D., SANCHEZ-THOMAS R., MORENO-SANCHEZ R. Bio-recovery of non-essential heavy metals by intra- and extracellular mechanisms in free-living microorganisms, Biotechnol. Adv. 34 (5), 859, 2016.
  • 14. BARRAMEDA-MEDINA Y., MONTESINOS-PEREIRA D., ROMERO L., BLASCO B., RUIZ J.M. Role of GSH homeostasis under Zn toxicity in plants with different Zn tolerance, Plant Sci. 227, 110, 2014.
  • 15. SMITH S.D.P. The roles of nitrogen and phosphorus in regulating the dominance of floating and submerged aquatic plants in a field mesocosm experiment, Aquat. Bot. 112, 1, 2014.
  • 16. MERA R., TORRES E., ABALDE J. Sulphate, more than a nutrient, protects the microalga Chlamydomonas moewusii from cadmium toxicity, Aquat. Toxicol. 148, 92, 2014.
  • 17. ZHANG W., LIN K., ZHOU J., ZHANG W., LIU L., HAN X. Spatial distribution and toxicity of cadmium in the joint presence of sulfur in rice seedling, Environ. Toxicol. Phar. 36 (3), 1235, 2013.
  • 18. ANJUM N.A., UMAR S., AHMAD A., IQBALM., KHAN N. A. Sulphur protects mustard (Brassica campestris L.) from cadmium toxicity by improving leaf ascorbate and glutathione, Plant Growth. Regul. 54 (3), 271, 2008.
  • 19. BASHIR H., AHMAD J., BAGHERI R., NAUMAN M., QURESHI M.I. Limited sulfur resource forces Arabidopsis thaliana to shift towards non-sulfur tolerance under cadmium stress, Environ. Exp. Bot. 94, 19, 2013.
  • 20. HASSAN M.J., WANG Z., ZHANG G. Sulfur alleviates growth inhibition and oxidative stress caused by cadmium toxicity in rice, J. Plant. Nutr. 28 (10), 1785, 2005.
  • 21. ZHAN F., HE Y., LI Y., LI T., YANG Y., TOOR G.S., ZHAO Z. Subcellular distribution and chemical forms of cadmium in a dark septate endophyte (DSE), Exophiala pisciphila, Environ. Sci. Pollut. R. 22 (22), 17897, 2015.
  • 22. RAMOS I., ESTEBAN E., LUCENA J.J., GARATE A. Cadmium uptake and subcellular distribution in plants of Lactuca sp. Cd-Mn interaction, Plant Sci. 162 (5), 761, 2002.
  • 23. WANG X., LIU Y., ZENG G., CHAI L., SONG X., MMIN Z., XIAO X. Subcellular distribution and chemical forms of cadmium in Bechmeria nivea (L.) Gaud., Environ. Exp. Bot. 62 (3), 389, 2008.
  • 24. CHEN M., ZHANG L., TUO Y., HE X., LI J., SONG Y. Treatability thresholds for cadmium-contaminated water in the wetland macrophyte Hydrilla verticillata (L.f.) Royle, Ecol. Eng. 96, 178, 2016.
  • 25. XU Q., CHU W., QIU H., FU Y., CAI S., SHA S. Responses of Hydrilla verticillata (L.f.) Royle to zinc: In situ localization, subcellular distribution and physiological and ultrastructural modifications, Plant Physiol. Bioch. 69, 43, 2013.
  • 26. LAFABRIE C., MAJOR K. M., MAJOR C. S., CEBRIAN J. Trace metal contamination of the aquatic plant Hydrilla verticillata and associated sediment in a coastal Alabama creek (Gulf of Mexico – USA), Mar. Pollut. Bull. 68 (1-2), 147, 2013.
  • 27. SRIVASTAVAS., MISHRA S., TRIPATHI R. D., DWIVEDI S., GUPTA D. K. Copper-induced oxidative stress and responses of antioxidants and phytochelatins in Hydrilla verticillata (L.f.) Royle, Aquat. Toxicol. 80 (4), 405, 2006.
  • 28. WEIGEL H.J., JAGER H.J. Subcellular distribution and chemical form of cadmium in bean plants, Plant Physiol. 65 (3), 480, 1980.
  • 29. WU F., DONG J., QIAN Q., ZHANG G. Subcellular distribution and chemical form of Cd and Cd-Zn interaction in different barley genotypes, Chemosphere 60 (10), 1437, 2005.
  • 30. BATES L.S., WALDREN R.P., TEARE I.D. Rapid determination of free proline for water-stress studies, Plant Soil 39 (1), 205, 1973.
  • 31. GAITONDE M.K. A spectrophotometric method for the direct determination of cysteine in the presence of other naturally occurring amino acids., Biochem. J. 104 (2), 627, 1967.
  • 32. ANDERSON M.E. Determination of glutathione and glutathione disulfide in biological samples, Method. Enzymol. 113 (4), 548, 1985.
  • 33. WENG B., XIE X., WEISS D.J., LIU J., LU H., YAN C. Kandelia obovata (S., L.) Yong tolerance mechanisms to cadmium: Subcellular distribution, chemical forms and thiol pools, Mar. Pollut. Bull. 64 (11), 2453, 2012.
  • 34. FAN J., HU Z., ZIADI N., XIA X., WU C. Excessive sulfur supply reduces cadmium accumulation in brown rice (Oryza sativa L.), Environ. Pollut. 158 (2), 409, 2010.
  • 35. LAI H. Subcellular distribution and chemical forms of cadmium in Impatiens walleriana in relation to its phytoextraction potential, Chemosphere 138, 370, 2015.
  • 36. PIETRINI F., IORI V., BIANCONI D., MUGHINI G., MASSACCI A., ZACCHINI M. Assessment of physiological and biochemical responses, metal tolerance and accumulation in two eucalypt hybrid clones for phytoremediation of cadmium-contaminated waters, J. Environ. Manage. 162, 221, 2015.
  • 37. CATALDO D.A., GARLAND T.R., WILDUNG R. E. Cadmium distribution and chemical fate in soybean plants, Plant Physiol. 68 (4), 835, 1981.
  • 38. FU X., DOU C., CHEN Y., CHEN X., SHI J., YU M., XU J. Subcellular distribution and chemical forms of cadmium in Phytolacca americana L., J. Hazard. Mater. 186 (1), 103, 2011.
  • 39. ZHONG Z., WANG H., WANG H., SONG Y., LI H. Effects of arsenic speciations on contents of main organic acids in Hydrilla verticillata and Potamogeton malaianus, Acta. Ecol. Sin. 32 (16), 5002, 2012.
  • 40. LI Z., YUAN H., HU X. Cadmium-resistance in growing Rhodotorula sp. Y11, Bioresource Technol. 99 (5), 1339, 2008.
  • 41. YAO Q., YANG R., LONG L., ZHU H. Phosphate application enhances the resistance of arbuscular mycorrhizae in clover plants to cadmium via polyphosphate accumulation in fungal hyphae, Environ. Exp. Bot. 108, 63, 2014.
  • 42. Lima M.A.B, Franco L.O., Souza P.M, Nascimento A.E., Silva C.A.A., Maia R. C.C., Rolim H.M.L., Takaki G.M.C. Cadmium tolerance and removal from Cunninghamella elegans related to the polyphosphate metabolism, Int. J. Mol. Sci. 14, 7180, 2013.
  • 43. BHATIA N.P., WAISH K.B., BAKER A.J.M. Detection and quantification of ligands involved in nickel detoxification in a herbaceous Ni hyperaccumulator Stackhousia tryonii Bailey, J. Exp. Bot. 56 (415), 1343, 2005.
  • 44. LI S., CHEN J., ISIAM E., WANG Y., WU J., YE Z., YAN W., PENG D., LIU D. Cadmium-induced oxidative stress, response of antioxidants and detection of intracellular cadmium in organs of moso bamboo (Phyllostachys pubescens) seedlings, Chemosphere 153, 107, 2016.
  • 45. KISHOR P.B.K., SANGAM S., AMRUTHA R. N., LAXMI P.S., NAIDU K.R., RAO K.R.S.S., RAO S., REDDY K.J., THERIAPPAN P., SREENIVASULU N. Regulation of proline biosynthesis, degradation, uptake and transport in higher plants: Its implications in plant growth and abiotic stress tolerance, Curr. Sci. India 88 (3), 424, 2005.
  • 46. ASHRAF M., FOOLAD M.R. Roles of glycine betaine and proline in improving plant abiotic stress tolerance., Environ. Exp. Bot. 59, 206, 2007.
  • 47. HAMILTON E.W., HECHKATHORN S.A. Mitochondrial adaptations to NaCl. complex I is protected by antioxidants and small heat shock proteins, whereas complex II is protected by proline and betaine, Plant Physiol. 126 (3), 1266, 2001.
  • 48. ALBERT B., CAHEREC F.L., NIOGRET M.F., FAES P., AVICE J.C., LEPORT L., BOUCHEREAU A. Nitrogen availability impacts oilseed rape (Brassica napus L.) plant water status and proline production efficiency under waterlimited conditions, Planta 236 (2), 659, 2012.
  • 49. KHAN M.I.R., NAZIR F., ASGHER M., PER T.S., KHAN N.A. Selenium and sulfur influence ethylene formation and alleviate cadmium-induced oxidative stress by improving proline and glutathione production in wheat, J. Plant Physiol. 173, 9, 2015.
  • 50. FATMA M., ASGHERM., MASOOD A., KHAN N.A. Excess sulfur supplementation improves photosynthesis and growth in mustard under salt stress through increased production of glutathione, Environ. Exp. Bot. 107, 55, 2014.
  • 51. LIANG T., DING H., WANG G., KANG J., PANG H., LV J. Sulfur decreases cadmium translocation and enhances cadmium tolerance by promoting sulfur assimilation and glutathione metabolism in Brassica chinensis L., Ecotox. Environ. Safe. 124, 129, 2016.
  • 52. CAPALDI F.R., GRATAO P.L., REIS A.R., LIMA L.W., AZEVEDO R.A. Sulfur metabolism and stress defense responses in plants, Trop. Plant Biol. 8 (3-4), 60, 2015.
  • 53. MARIESCHI M., GORBI G., ZANNI C., SARDELLA A., TORELLI A. Increase of chromium tolerance in Scenedesmus acutus after sulfur starvation: Chromium uptake and compartmentalization in two strains with different sensitivities to Cr(VI), Aquat. Toxicol. 167, 124, 2015.
  • 54. GUPTA M., RAI U.N., TRIPATHI R.D., CHANDRA P. Lead induced changes in glutathione and phytochelatin in Hydrilla verticillata (L.F.) royle, Chemosphere 30 (10), 2011, 1995.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-62f67ec0-3cd2-431c-9e39-e9096e165c33
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.