Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2016 | 85 | 4 |
Tytuł artykułu

Stochastic occurrence of trimery from pentamery in floral phyllotaxis of Anemone (Ranunculaceae)

Treść / Zawartość
Warianty tytułu
Języki publikacji
Merosity, indicating the basic number of floral organs such as sepals and petals, has been constrained to specific and stable numbers during the evolution of angiosperms. The ancestral flower is considered to have a spiral arrangement of perianth organs, as in phyllotaxis, the arrangement of leaves. How has the ancestral spiral evolved into flowers with specific merosities? To address this question, we studied perianth organ arrangement in the Anemone genus of the basal eudicot family Ranunculaceae, because various merosities are found in this genus. In three species, A. flaccida, A. scabiosa, and A. nikoensis that are normally pentamerous, we found positional arrangement of the excessive sixth perianth organ indicating the possibility of a transition from pentamerous to trimerous arrangement. Arrangement was intraspecifically stochastic, but constrained to three of five types, where trimerous arrangement was the most frequent in all species except for a form of A. scabiosa. The rank of frequency of the other two types was species-dependent. We connect these observations with classical theories of spiral phyllotaxis. The phyllotaxis model for initiation of the sixth organ showed that the three arrangements occur at a divergence angle <144°, indicating the spiral nature of floral phyllotaxis rather than a perfect penta-radial symmetry of 144°. The model further showed that selective occurrence of trimerous arrangement is mainly regulated by the organ growth rate. Differential organ growth as well as divergence angle may regulate transitions between pentamerous and trimerous flowers in intraspecific variation as well as in species evolution.
Słowa kluczowe
Opis fizyczny
Article 3530 [10p.], fig.,ref.
  • Center for Education in Liberal Arts and Sciences, Osaka University, 1-16 Machikaneyamacho, Toyonaka, 560-0043, Osaka, Japan
  • Department of Biological Sciences, Osaka University, 1-1 Machikaneyamacho, Toyonaka, 560-0043, Osaka, Japan
  • Department of Biological Sciences, Osaka University, 1-1 Machikaneyamacho, Toyonaka, 560-0043, Osaka, Japan
  • 1. Endress PK. The flowers in extant basal angiosperms and inferences on ancestral flowers. Int J Plant Sci. 2001;162(5):1111–1140.
  • 2. Douady S, Couder Y. Phyllotaxis as a dynamical self organizing process Part II: the spontaneous formation of a periodicity and the coexistence of spiral and whorled patterns. J Theor Biol. 1996;178(3):275–294.
  • 3. Smith RS, Guyomarc’h S, Mandel T, Reinhardt D, Kuhlemeier C, Prusinkiewicz P. A plausible model of phyllotaxis. Proc Natl Acad Sci USA. 2006;103(5):1301–1306.
  • 4. Kitazawa MS, Fujimoto K. A dynamical phyllotaxis model to determine floral organ number. PLoS Comput Biol. 2015;11(5):e1004145.
  • 5. Hoot SB, Meyer KM, Manning JC. Phylogeny and reclassification of Anemone (Ranunculaceae), with an emphasis on austral species. Syst Bot. 2012;37(1):139–152.
  • 6. Ren YI, Chang HL, Endress PK. Floral development in Anemoneae (Ranunculaceae). Bot J Linn Soc. 2010;162(1):77–100.
  • 7. Ronse De Craene L. Meristic changes in flowering plants: how flowers play with numbers. Flora. 2016;221:22–37.
  • 8. Kitazawa MS, Fujimoto K. A developmental basis for stochasticity in floral organ numbers. Front Plant Sci. 2014;5:545.
  • 9. Kitazawa MS, Fujimoto K. Relationship between the species-representative phenotype and intraspecific variation in Ranunculaceae floral organ and Asteraceae flower numbers. Ann Bot. 2016;117(5):925–935.
  • 10. Adler I. A history of the study of phyllotaxis. Ann Bot. 1997;80(3):231–244.
  • 11. Cunnell GJ. Aestivation in Ranunculus repens L. New Phytol. 1958;57(3):340–352.
  • 12. Zhao L, Bachelier JB, Chang HL, Tian XH, Ren Y. Inflorescence and floral development in Ranunculus and three allied genera in Ranunculeae (Ranunculoideae, Ranunculaceae). Plant Syst Evol. 2012;298(6):1057–1071.
  • 13. Gonçalves B, Nougué O, Jabbour F, Ridel C, Morin H, Laufs P, et al. An APETALA3 homolog controls both petal identity and floral meristem patterning in Nigella damascena L. (Ranunculaceae). Plant J. 2013;76(2):223–235.
  • 14. Wang P, Liao H, Zhang W, Yu X, Zhang R, Shan H, et al. Flexibility in the structure of spiral flowers and its underlying mechanisms. Nat Plants. 2015;2:15188.
  • 15. Coen ES, Meyerowitz EM. The war of the whorls: genetic interactions controlling flower development. Nature. 1991;353(6339):31–37.
  • 16. Douady S, Couder Y. Phyllotaxis as a dynamical self organizing process Part I: the spiral modes resulting from time-periodic iterations. J Theor Biol. 1996;178(3):255–273.
  • 17. Mirabet V, Besnard F, Vernoux T, Boudaoud A. Noise and robustness in phyllotaxis. PLoS Comput Biol. 2012;8(2):e1002389.
  • 18. Refahi Y, Brunoud G, Farcot E, Jean-Marie A, Pulkkinen M, Vernoux T, et al. A stochastic multicellular model identifies biological watermarks from disorders in self-organized patterns of phyllotaxis. eLife. 2016;5:e14093.
  • 19. Yule GU. Variation of the number of sepals in Anemone nemorosa. Biometrika. 1902;1(3):307–308.
  • 20. Salisbury EJ. Variation in Eranthis hyemalis, Ficaria verna, and other members of the Ranunculaceae, with special reference to trimery and the origin of the perianth. Ann Bot. 1919;os-33(1):47–79.
  • 21. Zagórska-Marek B. Magnolia flower – the living crystal. Magnolia. 2011;89:11–21.
Typ dokumentu
Identyfikator YADDA
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.