Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2013 | 22 | 2 |
Tytuł artykułu

Diurnal and seasonal changes in IL-6 and IL-18 gene expression in blood leukocytes of male chickens with experimental peritonitis: the impact of lighting conditions and melatonin

Warianty tytułu
Języki publikacji
The aim of this study was to examine the involvement of melatonin in the photoperiod-related development of inflammation in chickens. Newly hatched birds obtained in summer and winter were kept in a light : dark (LD) cycle (corresponding to the season of hatch) or in continuous light (LL). Half of the chickens held under LL conditions were given melatonin during the subjective night. Peritonitis was evoked on the 12th day of life by thioglycollate (TG) injection at the beginning or towards the end of the subjective day and the effect was measured 4 h later, i.e. during the day or at night. The development of inflammation was evaluated by the number of peritoneal leukocytes (PTLs) inflowing to the peritoneal cavity and by the level of mRNAs encoding proinflammatory cytokines in the blood leukocytes. Day/night differences in PTL number were seen only in the summer, regardless of the experimental conditions. In chickens kept under LL conditions and given melatonin, TG injection caused an increase in interleukin-6 (IL-6) mRNA level in blood leukocytes in summer and a decrease in winter. Neither experimental conditions nor circadian time affected the interleukin-18 (IL-18) mRNA level in summer, whereas in winter abundance of this transcript exhibited the daily variations and the influence of the treatment. The obtained results suggest the existence of clockcontrolled diurnal and seasonal variability of the chicken inflammatory reaction, which is influenced in different ways by circulating melatonin.
Słowa kluczowe
Opis fizyczny
  • Department of Animal Physiology, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096, Warsaw, Poland
  • Department of Zoology, School of Life Sciences, Guru Ghasidas Vishwavidyalaya 495 009 Bilaspur, Chhattisgarh, India
  • Department of Animal Physiology, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096, Warsaw, Poland
  • Department of Animal Physiology, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096, Warsaw, Poland
  • Ahmad R., Haldar C., 2009. Photoperiod-testicular-immune interaction in a seasonal breeder Indian palm squirrel Funambulus pennanti during the reproductively inactive and active phases. J. Neuroendocrinol. 21, 2–9
  • Akdis M., Burgler S., Crameri R., et al. 2011. Interleukins, from 1 to 37, and interferon-γ: receptors, functions, and roles in diseases. J. Allerg. Clin. Immunol. 127, 701–721.e1–70
  • Bell-Pedersen D., Cassone V.M., Earnest D.J., Golden S.S., Hardin P.E., Thomas T.L., Zoran M.J., 2005. Circadian rhythms from multiple oscillators: lessons from diverse organisms. Nat. Rev. Genet. 6, 544–556
  • Bilbo S.D., Nelson R.J., 2002. Melatonin regulates energy balance and attenuates fever in Siberian hamsters. Endocrinology 143, 2527–2533
  • Blatchford R.A., Klasing K.C., Shivaprasad H.L., Wakenell P.S., Archer G.S., Mench J.A., 2009. The effect of light intensity on the behavior, eye and leg health, and immune function of broiler chickens. Poultry Sci. 88, 20–28
  • Brandstätter R., 2003. Encoding time of day and time of year by the avian circadian system. J. Neuroendocrinol. 15, 398–404
  • Commins S.P., Borish L., Steinke J.W., 2010. Immunologic messenger molecules: cytokines, interferons, and chemokines. J. Allerg. Clin. Immunol. 125 Suppl. 2, S53–S72
  • Constantino G., Cuzzocrea S., Mazzon E., Caputi A.P., 1998. Protective effects of melatonin in zymosan-activated plasmainduced paw inflammation. Eur. J. Pharmacol. 363, 57–63
  • Currier N.L., Sun L.Z., Miller S.C., 2000. Exogenous melatonin: Quantitative enhancement in vivo of cells mediating nonspecific immunity. J. Neuroimmunol. 104, 101–108
  • Dickmeis T., 2009. Glucocorticoids and the circadian clock. J.Endocrinol. 200, 3–22
  • Escames G., Acuña-Castroviejo D., López L.C., Tan D.X., Maldonado M.D., Sánchez-Hidalgo M., León J., Reiter R.J., 2006.
  • Pharmacological utility of melatonin in the treatment of septic shock: Experimental and clinical evidence. J. Pharm. Pharmacol. 58, 1153–1165
  • Haimovich B., Calvano J., Haimovich A.D., Calvano S.E., Coyle S.M., Lowry S.F., 2010. In vivo endotoxin synchronizes and suppresses clock gene expression in human peripheral blood leukocytes. Crit. Care Med. 38, 751–758
  • Haldar C., Singh S., Rai S., Skwarlo-Sonta K., Pawlak J., Singaravel M., 2008. Melatonin an immunomodulation: Involvement of the neuro-endocrine network. In: C. Haldar, M. Singaravel, S.R. Pandi-Perumal, D.P. Cardinali (Editors). Experimental Endocrinology and Reproductive Biology. Science Publishers, Plymouth (UK), pp. 297–314
  • Hayashi M., Shimba S., Tezuka M., 2007. Characterization of the molecular clock in mouse peritoneal macrophages. Biol. Pharm. Bull. 30, 621–626
  • John T.M., Brown M.C., Wideman L., Brown G.M., 1994. Melatonin replacement nullifies the effect of light-induced functional pinealectomy on nociceptive rhythm in the rat. Physiol. Behav. 55, 735–739
  • Keller M., Mazuch J., Abraham U., Eom G.D., Herzog E.D., Volk H.D., Kramer A., Maier B., 2009. A circadian clock in macrophages controls inflammatory immune responses. Proc. Nat. Acad. Sci. USA 106, 21407–21412
  • Kirby J.D., Froman D.P., 1991. Research note: evaluation of humoral and delayed hypersensitivity responses in cockerels reared under constant light or a twelve hour light:twelve hour dark photoperiod. Poultry Sci. 70, 2375–2378
  • Klein D.C., 2007. Arylalkylamine N-Acetyltransferase: ‘the Timezyme’. J. Biol. Chem. 282, 4233–4237
  • Kliger C.A., Gehad A.E., Hulet R.M., Roush W.B., Lillehoj H.S., Mashaly M.M., 2000. Effects of photoperiod and melatonin on lymphocyte activities in male broiler chickens. Poultry Sci. 79, 18–25
  • Lotufo C.M., Lopes C., Dubocovich M.L., Farsky S.H., Markus R.P., 2001. Melatonin and N-acetylserotonin inhibit leukocyte rolling and adhesion to rat microcirculation. Eur. J. Pharmacol. 430, 351–357
  • Maestroni G.J., 1999. MLT and the immune-hematopoietic system. Adv. Exp. Med. Biol. 460, 395–405
  • Majewski P., Adamska I., Pawlak J., Baranska A., Skwarlo-Sonta K., 2005. Seasonality of pineal gland activity and immune functions in chickens. J. Pineal Res. 39, 66–72
  • Majewski P., Markowska M., Laskowska H., Waloch M., SkwarloSonta K., 2002. Effect of morphine on thioglycollate-induced peritonitis in chickens, Neuroendocrinol. Lett. 23,161–167
  • Majewski P., Markowska M., Pawlak J., Piesiewicz A., Turkowska E., Skwarlo-Sonta K., 2012. Pineal gland and melatonin: Impact on the seasonality of immune defence in mammals and birds. Adv. Neuroimmunol. Biol. 3, 95–108
  • Markus R.P., Ferreira Z.S., 2011. The immune-pineal axis: the role of pineal and extra-pineal melatonin in modulating inflammation. Adv. Neuroimmunol. Biol. 1, 95–104
  • Martin L.B., Weil Z.M., Nelson R.J., 2008. Seasonal changes in vertebrate immune activity: Mediation by physiological tradeoffs. Phil. Trans. Roy. Soc. London B. 363 (1490), 321–339
  • Moore C.B., Siopes T.D., 2000. Effects of lighting conditions and melatonin supplementation on the cellular and humoral immune responses in Japanese quail Coturnix coturnix japonica. Gen. Comp. Endocrinol. 119, 95–104
  • Naidu K.S., Morgan L.W., Bailey M.J., 2010. Inflammation in the avian spleen: timing is everything. BMC Mol. Biol. 11, 104–116
  • Nelson R.J., Demas G.E., 1997. Role of melatonin in mediating seasonal energetic and immunologic adaptations. Brain Res. Bull. 44, 423–430
  • Nelson R.J., Demas G.E., Klein S.L., Kriegsfeld L.J., 1995. The influence of season, photoperiod, and pineal melatonin on immune function. J. Pineal Res. 19, 149–165
  • Paul M.J., George N.T., Zucker I., Butler M.P., 2007. Photoperiodic and hormonal influences on fur density and regrowth in two hamster species. Amer. J. Physiol. – Regul. Integr. C 293, R2363–2369
  • Pawlak J., Golab M., Markowska M., Majewski P., Skwarlo-Sonta K., 2009. Photoperiod-related changes in hormonal and immune status of male Siberian hamsters, Phodopus sungorus. Comp. Biochem. Physiol. PT A 152, 299–303
  • Pawlak J., Majewski P., Markowska M., Skwarlo-Sonta K., 2005. Season- and gender-dependent changes in the immune function of Siberian hamsters (Phodopus sungorus). Neuroendocrinol. Lett. 26, 55–60
  • Piesiewicz A., Kedzierska U., Adamska I., Usarek M., Zeman M., Skwarlo-Sonta K., Majewski P.M., 2012a. Pineal arylalkylamine N-acetyltransferase (Aanat) gene expression as a target of inflammatory mediators in the chicken. Gen. Comp. Endocrinol. 179, 143–151
  • Piesiewicz A., Kedzierska U., Podobas E., Adamska I., Zuzewicz K., Majewski P.M., 2012b. Season-dependent postembryonic maturation of the diurnal rhythm of melatonin biosynthesis in the chicken pineal gland. Chronobiol. Int. 29, 1227–1238
  • Shini S., Shini A., Kaiser P., 2010. Cytokine and chemokine gene expression profiles in heterophils from chickens treated with corticosterone. Stress 13, 185–194
  • Singh S.S., Haldar C., 2007. Peripheral melatonin modulates seasonal immunity and reproduction of Indian tropical male bird Perdicula asiatica. Comp. Biochem. Physiol. PT A. 146, 446–450
  • Skwarlo-Sonta K., Majewski P., Pawlak J., Markowska M., 2007. Photoperiodic vs. non-photoperiodic animals – circadian and seasonal changes in immunity. In: S.R. Pandi-Perumal, D.P. Cardinali (Editors). Melatonin: From molecules to Therapy. New York, Nova Science Publishers Inc., pp. 247–260
  • Toth T.E., Siegel P.B., 1986. Cellular defense of the avian respiratory tract: paucity of free-residing macrophages in the normal chicken. Avian Dis. 30, 67–75
  • Wen J.C., Dhabhar F.S., Prendergast B.J., 2007. Pineal-dependent and -independent effects of photoperiod on immune function in Siberian hamsters (Phodopus sungorus). Hormone. Behav. 51, 31–39
Typ dokumentu
Identyfikator YADDA
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.