PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Czasopismo

2020 | 79 | 1 |

Tytuł artykułu

Semi-automatic segmentation and surface reconstruction of computed tomography images by using rotoscoping and warping techniques

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Background: Quick and large-scale segmentation along with three-dimensional (3D) reconstruction is necessary to make precise 3D musculoskeletal models for surface anatomy education, palpation training, medical communication, morphology research, and virtual surgery simulation. However, automatic segmentation of the skin and muscles remain undeveloped. Materials and methods: Therefore, in this study, we developed workflows for semi-automatic segmentation and surface reconstruction, using rotoscoping and warping techniques. Results: The techniques were applied to multi detector computed tomography images, which were optimised to quickly generate surface models of the skin and the anatomical structures underlying the fat tissue. Conclusions: The workflows developed in this study are expected to enable researchers to create segmented images and optimised surface models from any set of serially sectioned images quickly and conveniently. Moreover, these optimised surface models can easily be modified for further application or educational use. (Folia Morphol 2020; 79, 1: 156–161)

Słowa kluczowe

Wydawca

-

Czasopismo

Rocznik

Tom

79

Numer

1

Opis fizyczny

p.156-161,fig.,ref.

Twórcy

autor
  • Department of Emergency Medical Technology, Gachon University of College of Health Science, Incheon, South Korea
autor
  • Department of Emergency Medical Technology, Gachon University of College of Health Science, Incheon, South Korea
autor
  • Department of Emergency Medical Technology, Gachon University of College of Health Science, Incheon, South Korea

Bibliografia

  • 1. Badshah M, Soames R, Ibrahim M, et al. Surface anatomy of major anatomical landmarks of the neck in an adult population: A Ct Evaluation of Vertebral Level. Clin Anat. 2017; 30(6): 781–787, doi: 10.1002/ca.22907, indexed in Pubmed: 28514499.
  • 2. Badshah M, Soames R, Khan MJ, et al. Revisiting thoracic surface anatomy in an adult population: A computed tomography evaluation of vertebral level. Clin Anat. 2017; 30(2): 227–236, doi: 10.1002/ca.22817, indexed in Pubmed: 27935171.
  • 3. Dong X, Lei Y, Wang T, et al. Automatic multiorgan segmentation in thorax CT images using U-net-GAN. Med Phys. 2019; 46(5): 2157–2168, doi: 10.1002/mp.13458, indexed in Pubmed: 30810231.
  • 4. Fischer NJ, Morreau J, Sugunesegran R, et al. A reappraisal of pediatric thoracic surface anatomy. Clin Anat. 2017; 30(6): 788–794, doi: 10.1002/ca.22913, indexed in Pubmed: 28514496.
  • 5. Gargiulo P, Helgason T, Ramon C, et al. CT and MRI Assessment and Characterization Using Segmentation and 3D Modeling Techniques: Applications to Muscle, Bone and Brain. Eur J Transl Myol. 2014; 24(1): 3298, doi: 10.4081/ejtm.2014.3298, indexed in Pubmed: 26913129.
  • 6. Hu P, Wu Fa, Peng J, et al. Automatic abdominal multi-organ segmentation using deep convolutional neural network and time-implicit level sets. Int J Comput Assist Radiol Surg. 2017; 12(3): 399–411, doi: 10.1007/s11548-016-1501-5, indexed in Pubmed: 27885540.
  • 7. Jain N, Bhargava A, Pareek V, et al. Does seed size and surface anatomy play role in combating phytotoxicity of nanoparticles? Ecotoxicology. 2017; 26(2): 238–249, doi: 10.1007/s10646-017-1758-7, indexed in Pubmed: 28083774.
  • 8. Kamiya N, Zhou X, Chen H, et al. Automated segmentation of recuts abdominis muscle using shape model in X-ray CT images. Conf Proc IEEE Eng Med Biol Soc. 2011; 2011: 7993–7996, doi: 10.1109/IEMBS.2011.6091971, indexed in Pubmed: 22256195.
  • 9. Kamiya N, Zhou X, Chen H, et al. Automated segmentation of psoas major muscle in X-ray CT images by use of a shape model: preliminary study. Radiol Phys Technol. 2012; 5(1): 5–14, doi: 10.1007/s12194-011-0127-0, indexed in Pubmed: 21755416.
  • 10. Kianmehr N, Hasanzadeh A, Naderi F, et al. A randomized blinded comparative study of clinical response to surface anatomy guided injection versus sonography guided injection of hyaloronic acid in patients with primary knee osteoarthritis. Int J Rheum Dis. 2018; 21(1): 134–139, doi: 10.1111/1756-185X.13123, indexed in Pubmed: 28791808.
  • 11. Kim BC, Chung MS, Kim HJ, et al. Sectioned images and surface models of a cadaver for understanding the deep circumflex iliac artery flap. J Craniofac Surg. 2014; 25(2): 626–629, doi: 10.1097/SCS.0000000000000645, indexed in Pubmed: 24621709.
  • 12. Kim BC, Chung MS, Park HS, et al. Accessible and informative sectioned images and surface models of the maxillofacial area for orthognathic surgery. Folia Morphol. 2015; 74(3): 346–351, doi: 10.5603/FM.2015.0052, indexed in Pubmed: 26339816.
  • 13. Kohlberger T, Sofka M, Zhang J, et al. Automatic multi-organ segmentation using learning-based segmentation and level set optimization. Med Image Comput Comput Assist Interv. 2011; 14(Pt 3): 338–345, doi: 10.1007/978-3-642-23626-6_42, indexed in Pubmed: 22003717.
  • 14. Kwon K, Shin DS, Shin BS, et al. Virtual endoscopic and laparoscopic exploration of stomach wall based on a cadaver’s sectioned images. J Korean Med Sci. 2015; 30(5): 658–661, doi: 10.3346/jkms.2015.30.5.658, indexed in Pubmed: 25931800.
  • 15. Morris VB, Corrigan D, Sealy U, et al. Anatomy from the outside in: a new on-line surface anatomy guide. J Anat. 2016; 228(1): 24–25, doi: 10.1111/joa.12412, indexed in Pubmed: 26565814.
  • 16. Nadesan T, Keough N, Suleman FE, et al. Apprasial of the surface anatomy of the Thorax in an adolescent population. Clin Anat. 2019; 32(6): 762–769, doi: 10.1002/ca.23351, indexed in Pubmed: 30758865.
  • 17. Popuri K, Cobzas D, Esfandiari N, et al. Body composition assessment in axial CT images using fem-based automatic segmentation of skeletal muscle. IEEE Trans Med Imaging. 2016; 35(2): 512–520, doi: 10.1109/TMI.2015.2479252, indexed in Pubmed: 26415164.
  • 18. Quiles C, Constantino JA, Gañán Y, et al. Stereophotogrammetric surface anatomy of the anterior cruciate ligament’s tibial footprint: Precise osseous structure and distances to arthroscopically-relevant landmarks. Knee. 2018; 25(4): 531–544, doi: 10.1016/j.knee.2018.03.016, indexed in Pubmed: 29705076.
  • 19. Shen XH, Su BY, Liu JJ, et al. A reappraisal of adult thoracic and abdominal surface anatomy via CT scan in Chinese population. Clin Anat. 2016; 29(2): 165–174, doi: 10.1002/ca.22556, indexed in Pubmed: 26032163.
  • 20. Shen XH, Xue HD, Chen Yu, et al. A reassessment of cervical surface anatomy via CT scan in an adult population. Clin Anat. 2017; 30(3): 330–335, doi: 10.1002/ca.22847, indexed in Pubmed: 28192864.
  • 21. Shin DS, Chung MS, Park JS, et al. Portable document format file showing the surface models of cadaver whole body. J Korean Med Sci. 2012; 27(8): 849–856, doi: 10.3346/jkms.2012.27.8.849, indexed in Pubmed: 22876049.
  • 22. Shin DS, Jang HG, Hwang SB, et al. Two-dimensional sectioned images and three-dimensional surface models for learning the anatomy of the female pelvis. Anat Sci Educ. 2013; 6(5): 316–323, doi: 10.1002/ase.1342, indexed in Pubmed: 23463707.
  • 23. Shin DS, Jang HG, Park JS, et al. Accessible and informative sectioned images and surface models of a cadaver head. J Craniofac Surg. 2012; 23(4): 1176–1180, doi: 10.1097/SCS.0b013e31825657d8, indexed in Pubmed: 22801119.
  • 24. Shin DS, Kim HJ, Kim BC. Sectioned images and surface models of a cadaver for understanding the free vascularised anterior rib flap. Folia Morphol. 2017; 76(1): 117–122, doi: 10.5603/FM.a2016.0035, indexed in Pubmed: 27830889.
  • 25. Shin DS, Lee S, Park HS, et al. Segmentation and surface reconstruction of a cadaver heart on Mimics software. Folia Morphol. 2015; 74(3): 372–377, doi: 10.5603/FM.2015.0056, indexed in Pubmed: 26339820.
  • 26. Shin DS, Park SK. Surface Reconstruction and Optimization of Cerebral Cortex for Application Use. J Craniofac Surg. 2016; 27(2): 489–492, doi: 10.1097/SCS.0000000000002352, indexed in Pubmed: 26854785.
  • 27. Shin DS, Shim YJ, Kim BC. Sectioned images and 3D models of a cadaver head with reference to dermal filler injection. Ann Anat. 2018; 217: 34–39, doi: 10.1016/j.aanat.2018.02.001, indexed in Pubmed: 29481857.
  • 28. Shin DS, Shim YJ, Kim BC. Sectioned images and surface models of a cadaver head with reference to botulinum neurotoxin injection. Folia Morphol. 2018; 77(3): 564–569, doi: 10.5603/FM.a2018.0005, indexed in Pubmed: 29345721.
  • 29. Stern J. Surface anatomy of the trunk based on CT data. Clin Anat. 2016; 29(2): 130, doi: 10.1002/ca.22511, indexed in Pubmed: 25691286.
  • 30. Uzun C, Atman ED, Ustuner E, et al. Surface anatomy and anatomical planes in the adult turkish population. Clin Anat. 2016; 29(2): 183–190, doi: 10.1002/ca.22634, indexed in Pubmed: 26403267.
  • 31. Yokota F, Otake Y, Takao M, et al. Automated muscle segmentation from CT images of the hip and thigh using a hierarchical multi-atlas method. Int J Comput Assist Radiol Surg. 2018; 13(7): 977–986, doi: 10.1007/s11548-018-1758-y, indexed in Pubmed: 29626280.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-62253e4d-c2e6-4b0f-bd02-83a27a9e7ac6
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.