PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2015 | 71 | 03 |

Tytuł artykułu

Rola oksytocyny w stanach stresowych u zwierząt i ludzi

Warianty tytułu

EN
Oxytocin importance in stressoric states in human and animals

Języki publikacji

PL

Abstrakty

EN
In the last quarter century, new neurobiological functions of oxytocin (OXY) have been documented. Apart from the important hormonal roles of OXY in the reproductive system (parturition, lactation), it also acts as a neurotransmitter and/or neuromodulator via specific oxytocin receptors(OXYR) in different central nervous structures and peripheral tissues. A high density of OXYR in nervous structures has been confirmed in the amygdala, hypothalamus, hippocampus, nucleus accumbens, striatum, septum, spinal cord, and prefrontal cerebral cortex, which are responsible for states of tension and high emotional intensity, as well as in the adrenal gland – the terminal segment of the hypothalamic-hypophyseal-adrenal axis. OXY is a particularly important neurohormone in the physiopathology of social behaviours and mental states, such as fear, anxiety, aggression, depression, schizophrenia, and autism in humans. The anti-stress and anxiolytic effects of OXY are based mainly on its antagonistic influence on Glu and DA, and on its stimulating influence on the GABAergic central inhibitory system. In addition, OXY inhibits cortisol and CA (stress hormones) release from the cortex and medulla of the adrenal gland during stress.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

71

Numer

03

Opis fizyczny

s.136-141,rys.,bibliogr.

Twórcy

autor
  • Uniwersyteckie Centrum Medycyny Weterynaryjnej Uniwersytet Jagielloński-Uniwersytet Rolniczy w Krakowie, Katedra Biotechnologii Zwierząt, Al.Mickiewicza 21, 31-121 Kraków
autor
  • Katedra Fizjologii i Endokrynologii Zwierząt, Wydział Biologii i Hodowli Zwierząt, Uniwersytet Rolniczy im. Hugona Kołłątaja w Krakowie, Al.Mickiewicza 21, 31-121 Kraków
autor
  • Katedra Fizjologii i Endokrynologii Zwierząt, Wydział Biologii i Hodowli Zwierząt, Uniwersytet Rolniczy im. Hugona Kołłątaja w Krakowie, Al.Mickiewicza 21, 31-121 Kraków

Bibliografia

  • 1. Adolphs R.: Cognitive neuroscience of human social behavior. Nature Rev.4, 165-178.
  • 2. Altemus M.: Suppression of hypothalamic-pituitary adrenal axis responses to stress in lactating women. J. Clin. Endocrinol. Metab. 1995, 80, 2954-2959.
  • 3. Baumgartner T., Heinrichs M., Vonlanthen A., Fischbacher U., Fehr E.: Oxytocin shapes the neural circuitry of trust and trust adaptation in humans.Neuron 2008, 58, 639-650.
  • 4. Bethelehem R. A. I., van Honk J., Auyeung B., Baron-Cohen S.: Oxytocin, brain physiology, an functional connectivity: A review of intranasal oxytocinfMRI studies. Psychoneuroendocrinol. 2012, http://dx.doi.org/10.1016/j.psyneuen.20012.10.011
  • 5. Brann D. W., Mahesh V. B.: Excitatory amino acids: evidence for a role in the control of reproduction and anterior pituitary hormone secretion. Endocrine Rev. 1997, 18, 678-670.
  • 6. Caldwel H. K., Stephens S. L., Young W. S. 3rd: Oxytocin as a natural antipsychotic: a study using oxytocin knockout mice. Mol. Psychiatry 2009, 14,190-196.
  • 7. Cardoso C., Ellenbogen M. A., Orlando M. A., Bacon S. L., Joober R.: Intranasal oxytocin attenuates the cortisol response to physical stress:a dose-response study. Psychoneuroendocrinol. 2013, 38, 399-407.
  • 8. Clark R. G., Chambers G., Lewin J., Robinson I. C.: Automated repetitive microsampling of blood: growth hormone profiles in conscious male rats.J. Neuroendocrinol. 1986, 111, 27-35.
  • 9. Domes G., Heinrichs M., Glascher J., Buchel C., Braus D. F., Herpertz S. C.: Oxytocin attenuates amygdala responses to emotional faces regardless ofvalence. Biol. Psychiatry 2007, 62, 1187-1190.
  • 10. Durand D., Pampillo M., Caruso C., Lasaga M.: Role of metabotropic glutamate receptors in the control of neuroendocrine function. Neuropharmacol.2008, 55, 577-583.
  • 11. Gould B. R., Zingg H. H.: Mapping oxytocin receptor gene expression in the mouse brain and mammary gland using an oxytocin receptor-LacZ reportermouse. Neurosci. 2003, 122, 155-167.
  • 12. Herman J. P., Figuiredo H., Mueller N. K., Ulrich-Lai Y., Ostrander M. M., Choi D. C., Cullinan W. E.: Central mechanisms of stress integration: pituitary-adrenocorticalresponsiveness. Neuroendocrinol. 2003, 24, 151-180.
  • 13. Huber D., Veinante P., Stoop R.: Vasopressin and oxytocin excite distinct neuronal populations in the central amygdala. Science 2005, 308, 245-248.
  • 14. Kirsch P., Esslinger C., Chen Q., Mier D., Lis S., Siddhanti S., Gruppe H., Mattay V. S., Gallhofer B., Meyer-Lindenberg A.: Oxytocin modulates neuralcircuitry for social cognition and fear in humans. J. Neurosci. 2005, 25, 11489--11493.
  • 15. Klein D. F., Skrobala A. M., Garfinkel R. S.: Preliminary look at the effects of pregnancy of the course of panic disorder. Anxiety 1996, 1, 227-232.
  • 16. Knobloch H. S., Charlet A., Hoffmann L. C., Eliava M., Khrulev S., Cetin A. H., Osten P., Schwarz M. K., Seeburg P. H., Stoop C., Grinevich V.: Evoked axonaloxytocin release in the central amygdala attenuates fear response. Neuron2012, 73, 553-566.
  • 17. Landgraf R., Nneumann I.: Vasopressin and oxytocin release within the brain: a dynamic concept of multiple and variable modes of neuropeptide communication.Front. Neuroendocrinol. 2004, 25, 150-176.
  • 18. Lee H. J., Macbeth A. H., Pagani J. H., Young III W. S.: Oxytocin: the great facilitator of life. Prog. Neurobiol. 2009, 88, 127-151.
  • 19. Levin R., Edelman S., Shalev I., Ebstein R. P., Heresco-Levy U.: The role of oxytocin in neuropsychiatric disorders: Concepts and mechanisms, [w:]Rirsner M. S. (red.): Brain Protection in Schizophrenia, Mood and CognitiveDisorders. Springer Science + Business Media B.V. 2010, s. 611-634.
  • 20. Lightman S. L.: The neuroendocrinology of stress: a never ending story.J. Neuroendocrinol. 2008, 20, 880-884.
  • 21. McCarthy M. M.: Estrogen modulation of oxytocin and its relation to behavior,[w:] Ivell R., Ressel J. (red.): Oxytocin. Plenum 1995, s. 235-245.
  • 22. McCarthy M. M., Altemus M.: Central nervous system actions of oxytocin and modulation of behavior in humans. Mol. Med. Today 1997, 6, 269-275.
  • 23. Meeker R. B., Swanson D. J., Greenwood R. S., Hayward J. N.: Ultrastructural distribution of glutamate immunoreactivity within neurosecretory endings andpituicytes of the rat neurohypophysis. Brain Res. 1991, 564, 181-193.
  • 24. Meyer-Lindenberg A., Domes G., Kirsch P., Heinrichs M.: Oxytocin and vasopressin in the human brain: social neuropeptides for translational medicine.Nat. Rev. Neurosci. 2011, 12, 524-538.
  • 25. Morsette D. J., Sidorowicz H., Sladek C. D.: Role of non-NMDA receptors in vasopressin and oxytocin release from rat hypothalamo-neurohypophysialexplants. Am. J. Physiol. 2001, 280, R313-R322.
  • 26. Neumann I. D., Torner L., Toschi N., Veenema A. H.: Oxytocin within the supraoptic and paraventricular nuclei: differential effects on peripheral andintranuclear vasopressin release. Am. J. Physiol. Regul. Integr. Comp. Physiol.2006, 19, R29-R36.
  • 27. O’Doherty J., Dayan P., Schultz J., Deichmann R., Friston K., Dolan R. J.: Dissociable roles of ventral and dorsal striatum in instrumental conditioning.Science 2004, 304, 452-454.
  • 28. Olff M.: Bonding after trauma: on the role of social support and the oxytocin system in traumatic stress. Eur. J. Psychotraumatol. 2012, 3. DOI: 10.3402/EJPT.V3I0.18597
  • 29. Pampillo M., del Carmen Diaz M., Duvilanski B. H., Rettori V., Seilicovich A., Lasaga M.: Differential effects of glutamate agonists and D-aspartate on oxytocin release from hypothalamus and posterior pituitary of male rats.Endocrine 2001, 15, 309-315.
  • 30. Pittman Q. J., Spencer S. J.: Neurohypophysial peptides: gatekeepers in the amygdala. Trends Endocrinol. Metab. 2005, 16, 343-344.
  • 31. Quirin M., Kuhl J., Dusing R.: Oxytocin buffers cortisol responses to stress in individuals with impaired emotion regulation abilities. Psychoneuroendocrinol.2011, 36, 898-904.
  • 32. Samson W. K., Mogg J. R.: Oxytocin as part of stress responses, [w:] Current Topics in Neuroendocrinology. Springer Verlag 1990, vol. 10, s. 33-60.
  • 33. Sesack S. R., Carr D. B.: Selective prefrontal cortex inputs to dopamine cells: implications for schizophrenia. Physiol. Behav. 2002, 77, 513-517.
  • 34. Silvermann A. J., Zimmermann E. A.: Magnocellular neurosecretory system. Ann. Rev. Neurosci. 1983, 6, 357-380.
  • 35. Skuse D. H., Gallagher J.: Dopaminergic-neuropeptide interactions in the social brain. Trends Cognitive Sci. 2009, 13, 27-35.
  • 36. Sripada C. S., Phan K. L., Labuschagne I., Welsh R., Nathan P. J., Wood A. G.: Oxytocin enhances resting-state connectivity between amygdala and medial frontal cortex. Int. J. Neuropsychopharmacol. 2013, 16, 255-260.
  • 37. Stachowiak A., Macchi C., Nussdorfer G. G., Malendowicz L. K.: Effects of oxytocin on the function and morphology of the rat adrenal cortex: in vitro and in vivo investigations. Exp. Med. 1995, 195(5), 265-274.
  • 38. Susaman V. L., Katz J. L.: Weaning and depression: another postpartum complication. Am. J. Psychiatry 1988, 145, 498-501.
  • 39. Thind K. K., Goldsmith P. C.: Glutamate and GABA-ergic neurointeractions in the monkey hypothalamus: a quantitative immunomorphological study.Neuroendocrinol. 1995, 61, 471-485.
  • 40. Veening J. G., Olivier B.: Intranasal administration of oxytocin: Behavioral and clinical effects, a review. Neurosci. Biobehav. Rev. 2013, 37, 1445-1465.
  • 41. Viviani D., Charlet A., van den Berg E., Robinet C., Hurni N., Abatis M., Magara F., Stoop R.: Oxytocin selectivity gates fear responses through distinct outputs from the central amygdala. Science 2011, 333, 104-107.
  • 42. Viviani D., Stoop R.: Opposite effects of oxytocin and vasopressin on the emotional expression of the fear response. Progr. Brain Res. 2008, 170, 207--218.
  • 43. Weisman O., Zagoory-Sharon O., Feldman R.: Oxytocin administration alerts HPA activity in the context of parent-infant interaction. Eur. Neuropsychopharmacol.2013, http://dx.doi.org/10.1016/j.euroneuro.2013.06.06
  • 44. Windle R. J., Wood S. A., Kershaw Y. M., Lightman S. L., Ingram C. D., Harbuz M. S.: Increased corticosterone pulse frequency during adjuvant--induced arthritis and its relationship to alterations in stress responsiveness.J. Neuroendocrinol. 2001, 13, 905-911.
  • 45. Windle R. J., Wood S. A., Shanks N., Lightman S. L., Ingram C. D.: Ultradian rhythm of basal corticosterone release in the female rat: dynamic interactionwith the response to acute stress. Endocrinology 1998, 139, 443-450.
  • 46. Wrońska-Fortuna D., Błachuta M., Hajduk M.: The effect of ACTH on in vitro OXY release from sheep adrenal gland. 21th Molecular and physiological aspects of regulatory processes of the organism, Cracow 2012. Proceedings,s. 409-410.
  • 47. Wrońska-Fortuna D., Sechman A., Hrabia A., Zięba D.: Effect of hypothalamic neuropeptides (CRH, AVP, and OXY) on in vitro catecholamines release bysheep adrenal gland. XXXIX ESNA Annual Meeting, Brno, Czech Republic,August 25-29, 2009. Book of Abstracts, s. 27.
  • 48. Wrońska-Fortuna D., Sechman A., Hrabia A., Zięba D.: Effect of hypothalamic neuropeptides (CRH, AVP and OXY) on in vitro cortisol release by sheep adrenal gland. 18th International Symposium of the Polish Network of Molecular and Cellular Biology, 17-18 September 2009. Materials, s. 372-373.
  • 49. Yang J.: Intrathecal administration of oxytocin induces analgesia in low back pain involving the endogenous opiate peptide system. Spine 1994, 19, 8867- -871.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-61e2b742-91fe-47d7-9c8a-172aee4ff3dd
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.