PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2016 | 85 | 3 |

Tytuł artykułu

Vascular structure contributes to shoot sectoriality in Selaginella kraussiana

Treść / Zawartość

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Selaginella species are characterized by regular anisotomous dichotomous divisions of the shoot apical meristem, giving rise to two new axes (branches) which differ in size. A vital process is the formation of vascular connections, which enables continuous communication and consequent functional and developmental integration of a plant during branching. Here, we present the sequence of developmental changes in the vascular system of Selaginella kraussiana related to dichotomous branching. Stem vasculature in Selaginella kraussiana consists of two meristeles which change in arrangement during shoot development. Using dye tracers, we documented developmental functional isolation of meristeles associated with the specific structure of the stelar system, which results in a spatiotemporal sectoriality of the shoot. We discuss sectoriality in terms of possible significance for shoot development.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

85

Numer

3

Opis fizyczny

Article 3515 [12p.], fig.,ref.

Twórcy

autor
  • Department of Plant Developmental Biology, Institute of Experimental Biology, Faculty of Biological Sciences, University of Wroclaw, Kanonia 6/8, 50-328 Wroclaw, Poland
  • Department of Plant Sciences, University of California, Davis, One Shields Avenue, Davis, CA 95616, USA

Bibliografia

  • 1. Sussex IM, Kerk NM. The evolution of plant architecture. Curr Opin Plant Biol. 2001;4(1):33–37. http://dx.doi.org/10.1016/S1369-5266(00)00132-1
  • 2. Leyser O. Regulation of shoot branching by auxin. Trends Plant Sci. 2003;8(11):541–545. http://dx.doi.org/10.1016/j.tplants.2003.09.008
  • 3. Evert RF. Esau’s plant anatomy: meristems, cells, and tissues of the plant body: their structure, function, and development. 3rd ed. Hoboken, NJ: John Wiley & Sons; 2006. http://dx.doi.org/10.1002/0470047380
  • 4. Troll W. Vergleichende Morphologie der höheren Pflanzen. Vol. 2. Berlin: Gebrüder Borntraeger Verlag; 1937.
  • 5. Jermy AC. Selaginellaceae. In: Kramer KU, Green PS, editors. The families and genera of vascular plants. Vol. 1. Pteridophytes and gymnosperms. Berlin: Springer; 1990. p. 31–39.
  • 6. Gola EM. Dichotomous branching: the plant form and integrity upon the apical meristem bifurcation. Front Plant Sci. 2014;5:263. http://dx.doi.org/10.3389/fpls.2014.00263
  • 7. Cusick F. Experimental and analytical studies on Pteridophytes. XXII. Morphogenesis in Selaginella willdenovii Baker. I. Preliminary morphological analysis. Ann Bot. 1953;17:369–383.
  • 8. Webster TR, Steeves TA. Developmental morphology of the root of Selaginella kraussiana A. Br. and Selaginella wallacei Hieron. Can J Bot. 1964;42(12):1665–1676. http://dx.doi.org/10.1139/b64-165
  • 9. Webster TR, Steeves TA. Developmental morphology of the root of Selaginella martensii Spring. Can J Bot. 1967;45(4):395–404. http://dx.doi.org/10.1139/b67-039
  • 10. ernstedt AJ, Cutter EG, Gifford EM, Lu P. Angle meristem origin and development in Selaginella martensii. Ann Bot. 1992;69:351–363.
  • 11. Webster TR. Developmental problems in Selaginella (Selaginellaceae) in an evolutionary context. Ann Mo Bot Gard. 1992;79(3):632–647. http://dx.doi.org/10.2307/2399757
  • 12. Kato M, Imaichi R. Morphological diversity and evolution of vegetative organs in pteridophytes. In: Iwatsuki K, Raven PH, editors. Evolution and diversification of land plants. Tokyo: Springer; 1997. p. 27–43. http://dx.doi.org/10.1007/978-4-431-65918-1_2
  • 13. Wochok ZS, Sussex IM. Morphogenesis in Selaginella. I. Auxin transport in the stem. Plant Physiol. 1973;51:646–650. http://dx.doi.org/10.1104/pp.51.4.646
  • 14. Jernstedt JA, Cutter EG, Lu P. Independence of organogenesis and cell pattern in developing angle shoots of Selaginella martensii. Ann Bot. 1994;74(4):343–355. http://dx.doi.org/10.1006/anbo.1994.1127
  • 15. Hagemann W. Über den Verweigungsvorgang bei Psilotum und Selaginella mit Anmerkungen zum Begriff der Dichotomie. Plant Syst Evol. 1980;133:181–197. http://dx.doi.org/10.1007/BF00984379
  • 16. Mickel JT, Hellwig RL. Actino-plectostely, a complex new stelar pattern in Selaginella. Am Fern J. 1969;59(3):123–134. http://dx.doi.org/10.2307/1545992
  • 17. Ogura Y. Comparative anatomy of vegetative organs of the pteridophytes. 2nd ed. Berlin: Gebrüder Borntraeger; 1972.
  • 18. Jacobs WP. Development of procambium, xylem, and phloem in the shoot apex of Selaginella. Bot Gaz. 1988;149(1):64–70. http://dx.doi.org/10.1086/337692
  • 19. Buck WR, Lucansky TW. An anatomical and morphological comparison of Selaginella apoda and Selaginella ludoviciana. Bulletin of the Torrey Botanical Club. 1976;103(1):9–16. http://dx.doi.org/10.2307/2484743
  • 20. Schulz C, Little DP, Stevenson DW, Bauer D, Moloney C, Stützel T. An overview of the morphology, anatomy, and life cycle of a new model species: the lycophyte Selaginella apoda (L.) Spring. Int J Plant Sci. 2010;171(7):693–712. http://dx.doi.org/10.1086/654902
  • 21. Barclay BD. Origin and development of tissues in stem of Selaginella wildenovii. Bot Gaz. 1931;91(4):452–461. http://dx.doi.org/10.1086/334168
  • 22. McLean B, Juniper BE. The fine structure and development of the trabeculae and the trabecular ring in Selaginella kraussiana. Planta. 1979;145(5):443–448. http://dx.doi.org/10.1007/BF00380098
  • 23. Kenrick P, Crane PR. The origin and early evolution of plants on land. Nature. 1997;389:33–39. http://dx.doi.org/10.1038/37918
  • 24. Kenrick P. The relationships of vascular plants. Philos Trans R Soc Lond B. 2000;355(1398):847–855. http://dx.doi.org/10.1098/rstb.2000.0619
  • 25. Banks JA, Nishiyama T, Hasebe M, Bowman JL, Gribskov M, dePamphilis C, et al. The Selaginella genome identifies genetic changes associated with the evolution of vascular plants. Science. 2011;332(6032):960–963. http://dx.doi.org/10.1126/science.1203810
  • 26. Plackett ARG, Di Stilio VS, Langdale JA. Ferns: the missing link in shoot evolution and development. Front Plant Sci. 2015;6:972. http://dx.doi.org/10.3389/fpls.2015.00972
  • 27. O’Brien TP, McCully ME. The study of plant structure: principles and selected methods. Melbourne: Termarcarphi Pty Ltd.; 1981.
  • 28. Chapman K, Groot EP, Nichol SA, Rost TL. Primary root growth and the pattern of root apical meristem organization are coupled. J Plant Growth Reg. 2003;21(4):287–295. http://dx.doi.org/10.1007/s00344-002-0036-x
  • 29. Velenovsky J. Vergleichende Morphologie der Pflanzen. Vol. 1. Prag: Verlagsbuchhandlung von Fr. Rivnäc; 1905. http://dx.doi.org/10.5962/bhl.title.116264
  • 30. Oparka KJ, Davies HV. Translocation of assimilates within and between potato stem. Ann Bot. 1985;56(1):45–54.
  • 31. Marshall C. Sectoriality and physiological organisation in herbaceous plants: an overview. Vegetatio. 1996;127(1):9–16. http://dx.doi.org/10.1007/BF00054842
  • 32. Salguero-Gómez R, Casper BB. A hydraulic explanation for size-specific plant shrinkage: developmental hydraulic sectoriality. New Phytol. 2011;189(1):229–240. http://dx.doi.org/10.1111/j.1469-8137.2010.03447.x
  • 33. Orians CM, van Vuuren MMI, Harris NL, Babst BA, Ellmore GS. Differential sectoriality in long-distance transport in temperate tree species: evidence from dye flow, 15N transport, and vessel element pitting. Trees. 2004;18(5):501–509. http://dx.doi.org/10.1007/s00468-004-0326-y
  • 34. Orians CM, Smith SDP, Sack L. How are leaves plumbed inside a branch? Differences in leaf-to-leaf hydraulic sectoriality among six temperate tree species. J Exp Bot. 2005;56(418):2267–2273. http://dx.doi.org/10.1093/jxb/eri233
  • 35. Zanne AE, Sweeney K, Sharma M, Orians CM. Patterns and consequences of differential vascular sectoriality in 18 temperate tree and shrub species. Funct Ecol. 2006;20(2):200–206. http://dx.doi.org/10.1111/j.1365-2435.2006.01101.x
  • 36. Vuorisalo T, Hutchings MJ. On plant sectoriality, or how to combine the benefits of autonomy and integration. Vegetatio. 1996;127(1):3–8. http://dx.doi.org/10.1007/BF00054841
  • 37. Beck CB, Schmid R, Rothwell GW. Stelar morphology and the primary vascular system of seed plants. Bot Rev. 1982; 48:691–816. http://dx.doi.org/10.1007/BF02860874
  • 38. Sanders HL, Langdale JA. Conserved transport mechanisms but distinct auxin responses govern shoot patterning in Selaginella kraussiana. New Phytol. 2013;198(2):419–428. http://dx.doi.org/10.1111/nph.12183
  • 39. Wochok ZS, Sussex IM. Morphogenesis in Selaginella. II. Auxin transport in the root (rhizophore). Plant Physiol. 1974;53:738–741. http://dx.doi.org/10.1104/pp.53.5.738
  • 40. Sztein AE, Cohen JD, Cooke TJ. Evolutionary patterns in the auxin metabolism of green plants. Int J Plant Sci. 2000;161(6):849–859. http://dx.doi.org/10.1086/317566
  • 41. Webster TR. An investigation of angle-meristem development in excised stem segments of Selaginella martensii. Can J Bot. 1969;47(5):717–722. http://dx.doi.org/10.1139/b69-102
  • 42. Leyser O. Dynamic integration of auxin transport and signalling. Curr Biol. 2006;16(11):R424–R433. http://dx.doi.org/10.1016/j.cub.2006.05.014
  • 43. Scarpella E, Meijer AH. Pattern formation in the vascular system of monocot and dicot plant species. New Phytol. 2004;164(2):209–242. http://dx.doi.org/10.1111/j.1469-8137.2004.01191.x

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-61c6a895-ddf2-407d-bae3-2124da71ae87
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.