PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2019 | 28 | 5 |

Tytuł artykułu

Assessment framework of provincial carbon emission peak prediction in China: an empirical analysis of Hebei Province

Autorzy

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Since China claimed to achieve carbon emission peak around 2030 in the “China-U.S. Joint Presidential Statement on Climate Change,” whether or not the target can be accomplished has become the focus of discussion. Thus, the aim of this study is to forecast the carbon emissions peak of Hebei Province in China (as a case study) for the period of 2016-2030 through the historical data of 1990-2015 using the STIRPAT model and GA-BP (BP neural network based on genetic algorithm) model. We choose the proportion of coal consumption, population, urbanization rate, energy intensity, per capita GDP (replaced by GDP in the GA-BP model) and the proportion of services as the independent variables, and set 9 scenarios in the light of different increment speeds of these variables during 2016-2030. Results show that the ranges of estimated carbon emission peaks are 784.1635-1,007.2901 million tons in the STIRPAT model and 702.7465- 702.8144 million tons in the GA-BP model, with corresponding peak years all in or before 2030. Moreover, a comparative study of the STIRPAT and GA-BP models reveals that the GA-BP model estimates carbon emissions more accurately than STIRPAT; however, the STIRPAT model is more precise on the prediction of carbon emission peak years.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

28

Numer

5

Opis fizyczny

p.3753-3765,fig.,ref.

Twórcy

autor
  • School of Economics and Management, North China Electric Power University, Baoding, Hebei, China
autor
  • School of Economics and Management, North China Electric Power University, Baoding, Hebei, China

Bibliografia

  • 1. China Energy editorial department: China-U.S. Joint Presidential Statement on Climate Change. Energy of China. 36, 1, 2014.
  • 2. Commission CDaR. Outline of the thirteenth five year plan for China’s national economic and social development. 2016.
  • 3. SHI Y.P., YAN F.G. Structural decomposition analysis of carbon emission intensity in Hebei province based on MMIA. Science Technology and Industry. 16, 121, 2016.
  • 4. WANG P., DAI H.C., REN S.Y., ZHAO D.Q., MASUI T. Achieving Copenhagen target through carbon emission trading: Economic impacts assessment in Guangdong Province of China. Energy 79, 212, 2015.
  • 5. LU Q., YANG H., HUANG X., CHUAI X., WU C. Multi-sectoral decomposition in decoupling industrial growth from carbon emissions in the developed Jiangsu Province, China. Energy 82, 414, 2015.
  • 6. ZHANG N., WANG B., LIU Z. Carbon emissions dynamics, efficiency gains, and technological innovation in China’s industrial sectors. Energy 99, 10, 2016.
  • 7. MONDAL M.K., BALSORA H.K., VARSHNEY P. Progress and trends in CO₂ capture/separation technologies: A review. Energy 46, 431, 2012.
  • 8. LAJUNEN A., LIPMAN T. Lifecycle cost assessment and carbon dioxide emissions of diesel, natural gas, hybrid electric, fuel cell hybrid and electric transit buses. Energy 106, 329, 2016.
  • 9. XU B., LIN B. Carbon dioxide emissions reduction in China’s transport sector: A dynamic VAR (vector autoregression) approach. Energy 83, 486, 2015.
  • 10. TANG C.F., TAN B.W. The impact of energy consumption, income and foreign direct investment on carbon dioxide emissions in Vietnam. Energy 79, 447, 2015.
  • 11. ÖZBUĞDAY F.C., ERBAS B.C. How effective are energy efficiency and renewable energy in curbing CO₂ emissions in the long run? A heterogeneous panel data analysis. Energy 82, 734, 2015.
  • 12. KARMELLOS M., KOPIDOU D., DIAKOULAKI D. A decomposition analysis of the driving factors of CO₂ (Carbon dioxide) emissions from the power sector in the European Union countries. Energy 94, 680, 2016.
  • 13. LIN S., WANG S., MARINOVA D., ZHAO D., HONG J. Impacts of urbanization and real economic development on CO₂ emissions in non-high income countries: Empirical research based on the extended stirpat model. Journal of Cleaner Production. 166, 952, 2017.
  • 14. WANG Z., YIN F., ZHANG Y., ZHANG X. An empirical research on the influencing factors of regional CO₂ emissions: Evidence from Beijing city, China. Appl. Energ. 100, 277, 2012.
  • 15. WANG P., WU W., ZHU B., WEI Y. Examining the impact factors of energy-related CO₂ emissions using the STIRPAT model in Guangdong Province, China. Appl. Energ. 106, 65, 2013.
  • 16. WANG Y., KANG Y., WANG J., XU L. Panel estimation for the impacts of population-related factors on CO₂ emissions: A regional analysis in China. Ecological Indicators. 78, 322, 2017.
  • 17. HUBACEK K., FENG K., CHEN B. Changing Lifestyles Towards a Low Carbon Economy: An IPAT Analysis for China. Energies. 5, 22, 2011.
  • 18. XIA C., LI Y., YE Y., SHI Z., LIU J. Decomposed Driving Factors of Carbon Emissions and Scenario Analyses of Low-Carbon Transformation in 2020 and 2030 for Zhejiang Province. Energies. 10, 1747, 2017.
  • 19. ZHAO C., CHEN B., HAYAT T., ALSAEDI A., AHMAD B. Driving force analysis of water footprint change based on extended STIRPAT model: Evidence from the Chinese agricultural sector. Ecological Indicators. 47, 43, 2014.
  • 20. SHAHBAZ M., CHAUDHARY A.R., OZTURK I. Does urbanization cause increasing energy demand in Pakistan? Empirical evidence from STIRPAT model. Energy 122, 83, 2017.
  • 21. XU L., CHEN N., CHEN Z. Will China make a difference in its carbon intensity reduction targets by 2020 and 2030? Appl. Energ. 203, 874, 2017.
  • 22. SARSHAR J., MOOSAPOUR S.S., JOORABIAN M. Multi-objective energy management of a micro-grid considering uncertainty in wind power forecasting. Energy 139, 680, 2017.
  • 23. KADHEM A.A., WAHAB N., ARIS I., JASNI J., ABDALLA A. Advanced Wind Speed Prediction Model Based on a Combination of Weibull Distribution and an Artificial Neural Network. Energies. 10, 1744, 2017.
  • 24. YUCE B., MOURSHED M., REZGUI Y. A Smart Forecasting Approach to District Energy Management. Energies. 10, 1073, 2017.
  • 25. LE VAN S.C., B.H. Applicability of an Artificial Neural Network for Predicting Water-Alternating-CO₂ Performance. Energies. 10, 842, 2017.
  • 26. TAHERI-RAD A., KHOJASTEHPOUR M., ROHANI A., KHORAMDEL S., NIKKHAH A. Energy flow modeling and predicting the yield of Iranian paddy cultivars using artificial neural networks. Energy 135, 405, 2017.
  • 27. VÁSQUEZ N., MAGÁN C., OBLITAS J., CHUQUIZUTA T., AVILA-GEORGE H., CASTRO W. Comparison between artificial neural network and partial least squares regression models for hardness modeling during the ripening process of Swiss-type cheese using spectral profiles. Journal of Food Engineering. 219, 8, 2018.
  • 28. GARCIA-SEGURA R., VÁZQUEZ CASTILLO J., MARTELL-CHAVEZ F., LONGORIA-GANDARA O., ORTEGÓN AGUILAR J. Electric Arc Furnace Modeling with Artificial Neural Networks and Arc Length with Variable Voltage Gradient. Energies. 10, 1424, 2017.
  • 29. TANZIFI M., YARAKI M.T., KIADEHI A.D., HOSSEINI S.H., OLAZAR M., BHARTI A.K., AGARWAL S., GUPTA V.K., KAZEMI A. Adsorption of Amido Black 10B from aqueous solution using polyaniline/SiO₂ nanocomposite: Experimental investigation and artificial neural network modeling. J Colloid Interface Sci. 510, 246, 2018.
  • 30. MORSE L., SHARIF KHODAEI Z., ALIABADI M.H. Reliability based impact localization in composite panels using Bayesian updating and the Kalman filter. Mechanical Systems and Signal Processing. 99, 107, 2018.
  • 31. SOLTANALI H., NIKKHAH A., ROHANI A. Energy audit of Iranian kiwifruit production using intelligent systems. Energy 139, 646, 2017.
  • 32. RASHIDI M.M., AGHAGOLI A., RAOOFI R. Thermodynamic analysis of the ejector refrigeration ycle using the artificial neural network. Energy 129, 201, 2017.
  • 33. FAZLI SHAHRI H.R., MAHDAVINEJAD R. Prediction of temperature and HAZ in thermal-based processes with Gaussian heat source by a hybrid GA-ANN model. Optics & Laser Technology. 99, 363, 2018.
  • 34. HOERL A.E., KENNARD R.W. Ridge regression: biased estimation for nonorthogonal problems: American Society for Quality Control and American Statistical Association. 2000.
  • 35. LI B.R. Econometrics (Second Edition). China Mechine Press. 2015.
  • 36. LI H., MU H., ZHANG M., GUI S. Analysis of regional difference on impact factors of China’s energy – Related CO₂ emissions. Energy 39, 319, 2012.
  • 37. DU Q., CHEN Q., LU N. Forecast of China’s carbon emissions based on modified IPAT model. Acta Scientiae Circumstantiae. 32, 2294, 2012.
  • 38. SONG X.H., ZHANG Y.F., WANG Y.M., FENG Y.C. Analysis of impacts of demographic factors on carbon emissions based on the IPAT model. Research of Environmental Sciences. 25, 109, 2012.
  • 39. YANG M., CHEN K. Influencing factors of carbon emissions in Hebei province based on the STIRPAT and Decoupling Models. Journal of Northeastern University (Natural Science). 38, 300, 2017.
  • 40. GAO Y.M., ZHANG R.J. Analysis of house price prediction based on Genetic Algorithm and BP Neural Network. Computer Egineering. 40, 187, 2014.
  • 41. ZANG D.W., LU B.H., ZHU C.F., LU J.Y., LIU H., ZUO J. Study of GA-BP Neural Network for water requirement prediction based on Gray Correlation Analysis. Water Resources and Power. 39, 2015.
  • 42. JI G.Y. Application of BP neural network model in the prediction of China’s carbon emissions based on Grey Correlation analysis. 44, 243, 2014.
  • 43. LIANG W. Study of double dividend of environmental tax based on CGE model – A case study of Shandong province. Tianjin University. 2013.
  • 44. SUN M.X. Hebei News Network [http://hebei.hebnews.cn/2014-07/11/content_4033414.htm]

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-61ae2af2-0130-4496-be8d-3deef5453247
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.