PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2014 | 74 | 4 |

Tytuł artykułu

Reprogramming of somatic cells: possible methods to derive safe, clinical-grade human induced pluripotent stem cells

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Derivation of pluripotent stem cells from adult somatic tissues by reprogramming technology has opened new therapeutic possibilities. Current most efficient procedures for derivation of induced pluripotent stem (iPS) cells are based on the viral vectors, which represent the danger of insertional mutagenesis during incorporation of introduced genes into the host genome. To circumvent this problem, the new, safe, non-integrative and non-viral strategies of reprogramming have been developed. In this review we discuss novel DNA-free and viral-free methods of reprogramming to iPS cells including protein transduction, mRNA and microRNA delivery.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

74

Numer

4

Opis fizyczny

p.373-382,fig.,ref.

Twórcy

  • NeuroRepair Department, Mossakowski Medical Research Centre, Polish Academy of Sciences, Warsaw, Poland
autor
  • NeuroRepair Department, Mossakowski Medical Research Centre, Polish Academy of Sciences, Warsaw, Poland
  • NeuroRepair Department, Mossakowski Medical Research Centre, Polish Academy of Sciences, Warsaw, Poland
autor
  • International Clinical Research Center, St. Anne’s University Hospital, Brno, Czech Republic
  • Department of Histology and Embryology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
autor
  • NeuroRepair Department, Mossakowski Medical Research Centre, Polish Academy of Sciences, Warsaw, Poland

Bibliografia

  • Alexopoulou L, Holt AC, Medzhitov R, Flavell RA (2001) Recognition of double-stranded RNA and activation of NF-kappaB by Toll-like receptor 3. Nature 413: 732¬738.
  • Ambros V (2004) The functions of animal microRNAs. Nature 431: 350-355.
  • Angel M, Yanik MF (2010) Innate immune suppression enables frequent transfection with RNA encoding repro¬gramming proteins. PLoS One 5: e11756.
  • Anokye-Danso F, Trivedi CM, Juhr D, Gupta M, Cui Z, Tian Y, Zhang Y, Yang W, Gruber PJ, Epstein JA, Morrisey EE (2011) Highly efficient miRNA-mediated reprogramming of mouse and human somatic cells to pluripotency. Cell Stem Cell 8: 376-388.
  • Arnold A, Naaldijk YM, Fabian C, Wirth H, Binder H, Nikkhah G, Armstrong L, Stolzing A (2012) Reprogram¬ming of human Huntington fibroblasts using mRNA. ISRN Cell Biology 12 [doi:10.5402/2012/124878].
  • Babiarz JE, Ruby JG, Wang Y, Bartel DP, Blelloch R (2008) Mouse ES cells express endogenous shRNAs, siRNAs, and other Microprocessor-independent, Dicer-dependent small RNAs. Genes Dev 22: 2773-2785.
  • Bartel DP (2004) MicroRNAs: genomics, biogenesis, mech¬anism, and function. Cell 116: 281-297.
  • Beerens AM, Al Hadithy AF, Rots MG, Haisma HJ (2003) Protein transduction domains and their utility in gene therapy. Curr Gene Ther 3: 486-494.
  • Betel D, Wilson M, Gabow A, Marks, DS, Sander C (2008) The microRNA.org resource: targets and expression. Nucleic Acids Res 36: D149-D153.
  • Bode JG, Brenndörfer ED, Häussinger D (2007) Subversion of innate host antiviral strategies by the hepatitis C virus. Arch Biochem Biophys 15: 254-265.
  • Bushman F, Lewinski M, Ciuffi A, Barr S, Leipzig J, Hannenhalli S Hoffmann C (2005) Genome-wide analy¬sis of retroviral DNA integration. Nat Rev Microbiol 3: 848-858.
  • Card DA, Hebbar PB, Li L, Trotter KW, Komatsu Y, Mishina Y, Archer TK (2008) Oct4/Sox2-regulated miR-302 tar¬gets cyclin D1 in human embryonic stem cells. Mol Cell Biol 28: 6426-6438.
  • Carey BW, Markoulaki S, Hanna J, Saha K, Gao Q, Mitalipova M, Jaenisch R (2009) Reprogramming of murine and human somatic cells using a single polycis- tronic vector. Proc Natl Acad Sci U S A 106: 157-162.
  • Chan EM, Ratanasirintrawoot S, Park IH, Manos PD, Loh YH, Huo H, Miller JD, Hartung O, Rho J, Ince TA, Daley GQ, Schlaeger TM (2009) Live cell imaging distinguish¬es bona fide human iPS cells from partially reprogrammed cells. Nat Biotechnol 27: 1033-1037.
  • Cyranoski D (2013) Stem cells cruise to clinic. Nature 494: 413. [doi: 10.1038/494413a]
  • Diebold SS, Kaisho T, Hemmi H, Akira S, Reis e Sousa C (2004) Innate antiviral responses by means of TLR7- mediated recognition of single-stranded RNA. Science 303: 1529-1531.
  • Dolezalova D, Mraz M, Barta T, Plevova K, Vinarsky V, Holubcova Z, Jaros J, Dvorak P, Pospisilova S, Hampl A (2012) MicroRNAs regulate p21(Waf1/Cip1) protein expression and the DNA damage response in human embryonic stem cells. Stem Cells 30: 1362-1372.
  • Drews K, Tavernier G, Demeester J, Lehrach H, De Smedt SC, Rejman J, Adjaye J (2012) The cytotoxic and immu- nogenic hurdles associated with non-viral mRNA-medi- ated reprogramming of human fibroblasts. Biomaterials 33: 4059-4068.
  • El-Sayed A, Futaki S, Harashima H (2009) Delivery of mac- romolecules using arginine-rich cell-penetrating peptides: ways to overcome endosomal entrapment. AAPS J 11:13-22.
  • Fusaki N, Ban H, Nishiyama A, Saeki K, Hasegawa M (2009) Efficient induction of transgene-free human pluri¬potent stem cells using a vector based on Sendai virus, an RNA virus that does not integrate into the host genome. Proc Jpn Acad Ser B Phys Biol Sci 85: 348-362.
  • Gurdon JB (1964) The transplantation of living cellnuclei. Adv Morphog 4: 1-43.
  • Heng BC, Heinimann K, Miny P, Iezzi G, Glatz K, Scherberich A, Zulewski H, Fussenegger M (2013) mRNA transfection-based, feeder-free, induced pluripo- tent stem cells derived from adipose tissue of a 50-year- old patient. Metab Eng 18: 9-24.
  • Hitsuda T, Michiue H, Kitamatsu M, Fujimura A, Wang F, Yamamoto T, Han XJ, Tazawa H, Uneda A, Ohmori I,
  • Nishiki T, Tomizawa K, Matsui H (2012) A protein trans¬duction method using oligo-arginine (3R) for the delivery of transcription factors into cell nuclei. Biomaterials 33: 4665-4672.
  • Hornung V, Ellegast J, Kim S, Brzozka K, Jung A, Kato H, Poeck H, Akira S, Conzelmann KK, Schlee M, Endres S, Hartmann G (2006) 5'-Triphosphate RNA is the ligand for RIG-I. Science 10: 994-997.
  • Houbaviy HB, Murray MF, Sharp PA (2003) Embryonic stem cell-specific MicroRNAs. Dev Cell 5: 351-358.
  • Huangfu D, Osafune K, Maehr R, Guo W, Eijkelenboom A, Chen S, Muhlestein W, Melton DA (2008) Induction of pluripotent stem cells from primary human fibroblasts with only Oct4 and Sox2. Nat Biotechnol 11: 1269¬1275.
  • Judson RL, Babiarz JE, Venere M, Blelloch R (2009) Embryonic stem cell-specific microRNAs promote induced pluripotency. Nat Biotechnol 27: 459-461.
  • Kariko K, Buckstein M, Ni H, Weissman D (2005) Suppression of RNA recognition by Toll-like receptors: the impact of nucleoside modification and the evolution¬ary origin of RNA. Immunity 23: 165-175.
  • Kim D, Kim CH, Moon JI, Chung YG, Chang MY, Han BS, Ko S, Yang E, Cha KY, Lanza R, Kim KS (2009) Generation of human induced pluripotent stem cells by direct delivery of reprogramming proteins. Cell Stem Cell 5: 472-476.
  • Kim VN, Han J, Siomi MC (2009) Biogenesis of small RNAs in animals. Nat Rev Mol Cell Biol 10: 126-139.
  • Latronico MV, Condorelli G (2009) MicroRNAs and cardiac pathology. Nat Rev Cardiol 6: 419-429.
  • Lee RC, Feinbaum RL, Ambros V (1993) The C. elegans heterochronic gene lin-4 encodes small RNAs with anti¬sense complementarity to lin-14. Cell 75: 843-854.
  • Levin DH, Petryshyn R, London IM (1981) Characterization of purified double-stranded RNA-activated eIF-2 alpha kinase from rabbit reticulocytes. J Biol Chem 256: 7638¬7641.
  • Li GH, Li W, Mumper RJ, Nath A (2012) Molecular mecha¬nisms in the dramatic enhancement of HIV-1 Tat trans¬duction by cationic liposomes. FASEB J 26: 2824-2834.
  • Lin SL, Chang D, Chang-Lin S, Lin CH, Wu DTS, Chen DT, Ying SY (2008) Mir-302 reprograms human skin cancer cells into a pluripotent ES-cell-like state. RNA 14: 2115¬2124.
  • Lin SL, Chang DC, Lin CH, Ying SY, Leu D, Wu DT (2011) Regulation of somatic cell reprogramming through induc¬ible mir-302 expression. Nucleic Acids Res 39: 1054¬1065.
  • Lin SL, Chang DC, Ying SY, Leu D, Wu DT (2010) MicroRNA miR-302 inhibits the tumorogenocity of human pluripotent stem cells by coordinate suppression of the CDK2 and CDK4/6 cell cycle pathways. Cancer Res 70: 9473-9482.
  • Makeyev EV, Zhang J, Carrasco MA, Maniatis T (2007) The MicroRNA miR-124 promotes neuronal differentiation by triggering brain-specific alternative pre-mRNA splic¬ing. Mol Cell 27: 435-448.
  • Marson A, Levine SS, Cole MF, Frampton GM, Brambrink T, Johnstone S, Guenther MG, Johnston WK, Wernig M, Newman J, Calabrese JM, Dennis LM, Volkert TL, Gupta S, Love J, Hannett N, Sharp PA, Bartel DP, Jaenisch R, Young RA. (2008) Connecting microRNA genes to the core transcriptional regulatory circuitry of embryonic stem cells. Cell 134: 521-533.
  • Matsui H, Tomizawa K, Lu YF, Matsushita (2003) Protein Therapy: in vivo protein transduction by polyarginine (11R) PTD and subcellular targeting delivery. Curr Protein Pept Sci 4: 151-157.
  • Mikkelsen TS, Hanna J, Zhang X, Ku M, Wernig M, Schorderet P, Bernstein BE, Jaenisch R, Lander ES, Meissner A (2008) Dissecting direct reprogramming through integrative genomic analysis. Nature 3: 49-55.
  • Miyoshi N, Ishii H, Nagano H, Haraguchi N, Dewi DL, Kano Y, Nishikawa S, Tanemura M, Mimori K, Tanaka F, Saito T, Nishimura J, Takemasa I, Mizushima T, Ikeda M, Yamamoto H, Sekimoto M, Doki Y, Mori M (2011) Reprogramming of mouse and human cells to pluripo- tency using mature microRNAs. Cell Stem Cell 3: 633¬638.
  • Narsinh KH1, Jia F, Robbins RC, Kay MA, Longaker MT, Wu JC (2011) Generation of adult human induced pluri- potent stem cells using nonviral minicircle DNA vectors. Nat Protoc 6: 78-88.
  • Nichols J, Smith A (2012) Pluripotency in the embryo and in culture. Cold Spring Harb Perspect Biol 4: a008128. [doi: 10.1101/cshperspect.a008128]
  • Okita K, Nakagawa M, Hyenjong H, Ichisaka T, Yamanaka S (2008) Generation of mouse induced pluripotent stem cells without viral vectors. Science 7: 949-953.
  • Pan C, Lu B, Chen H, Bishop CE (2010) Reprogramming human fibroblasts using HIV-1 TAT recombinant proteins OCT4, SOX2, KLF4 and c-MYC. Mol Biol Rep 37: 2117-2124.
  • Park IH, Zhao R, West JA, Yabuuchi A, Huo H, Ince TA, Lerou PH, Lensch MW, Daley GQ (2008) Reprogramming of human somatic cells to pluripotency with defined fac¬tors. Nature 10: 141-146.
  • Prochiantz A (2000) Messenger proteins: homeoproteins, TAT and others. Curr Opin Cell Biol 12: 400-406.
  • Puca AA, Daly MJ, Brewster SJ, Matise TC, Barrett J, Shea- Drinkwater M, Kang S, Joyce E, Nicoli J, Benson E, Kunkel LM, Perls T (2001) A genome-wide scan for link¬age to human exceptional longevity identifies a locus on chromosome 4. Proc Natl Acad Sci USA 28:10505-10508.
  • Rana TM (2007) Illuminating the silence: understanding the structure and function of small RNAs. Nat Rev Mol Cell Biol 8: 23-36.
  • Ren J, Jin P, Wang E, Marincola FM, Stroncek DF(2009). MicroRNA and gene expression patterns in the differen¬tiation of human embryonic stem cells. J Transl Med 7: 20. [doi: 10.1186/1479-5876-7-20]
  • Ruvkun G (2001) Molecular biology. Glimpses of a tiny RNA world. Science 26: 797-799.
  • Saito T, Owen DM, Jiang F, Marcotrigiano J, Gale M Jr (2008) Innate immunity induced by composition-depen¬dent RIG-I recognition of hepatitis C virus RNA. Nature 454: 523-527.
  • Schmidt A, Schwerd T, Hamm W, Hellmuth JC, Cui S, Wenzel M, Hoffmann FS, Michallet MC, Besch R, Hopfner KP, Endres S, Rothenfusser S (2009) 5'-triphos- phate RNA requires base-paired structures to activate antiviral signaling via RIG-I. Proc Natl Acad Sci U S A 21: 12067-12072.
  • Schroder ARW, Shinn P, Chen H, Berry C, Ecker JR, Bushman F (2002) HIV-1 integration in the human genome favors active genes and local hotspots. Cell 110: 521-529.
  • Schwarze SR, Hruska KA, Dowdy SF (2000) Protein trans¬duction: unrestricted delivery into all cells? Trends Cell Biol 10: 290-295.
  • Suh MR, Lee Y, Kim JY, Kim SK, Moon SH, Lee JY, Cha KY, Chung HM, Yoon HS, Moon SY, Kim VN, Kim KS (2004) Human embryonic stem cells express a unique set of microRNAs. Dev Biol 15: 488-498.
  • Szablowska-Gadomska I, Zayat V, Buzanska L (2011) Influence of low oxygen tensions on expression of pluripotency genes in stem cells. Acta Neurobiol Exp (Wars) 71: 86-93.
  • Szablowska-Gadomska I, Sypecka J, Zayat V, Podobinska M, Pastwinska A, Pienkowska-Grela B, Buzanska L (2012) Treatment with small molecules is an important milestone towards the induction of pluripotency in neural stem cells derived from human cord blood. Acta Neurobiol Exp (Wars) 72: 337-350.
  • Takahashi K, Yamanaka S (2006) Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 25: 663-676.
  • Takahashi K, Tanabe K, Ohnuki M, Narita M, Ichisaka T, Tomoda K, Yamanaka S (2007) Induction of pluripotent stem cells from adult human fibroblasts by defined fac¬tors. Cell 30: 861-872.
  • Takahasi K, Yoneyama M, Nishihori T, Hirai R, Kumeta H, Narita R, Gale M Jr, Inagaki F, Fujita T (2008) Nonself RNA-sensing mechanism of RIG-I helicase and activation of antiviral immune responses. Mol Cell 29: 428-440.
  • Takahashi M (2013) Retinal cell therapy using iPS cells. Rinsho Shinkeigaku 53: 1016.
  • Wadia JS, Dowdy SF (2002) Protein transduction technolo¬gy. Curr Opin Biotechnol 13: 52-56.
  • Wang Y, Baskerville S, Shenoy A, Babiarz JE, Baehner L, Blelloch R (2008) Embryonic stem cell-specific microR- NAs regulate the G1-S transition and promote rapid pro¬liferation. Nat Genet 40: 1478-1483.
  • Wang Y, Blelloch R (2009) Cell cycle regulation by MicroRNAs in embryonic stem cells. Cancer Res 69: 4093-4096.
  • Wang Y, Medvid R, Melton C, Jaenisch R, Blelloch R (2007) DGCR8 is essential for microRNA biogenesis and silencing of embryonic stem cell self-renewal. Nat Genet 39: 380-385.
  • Warren L, Manos PD, Ahfeldt T, Loh YH, Li H, Lau F, Ebina W, Mandal PK, Smith ZD, Meissner A, Daley GQ, Brack AS, Collins JJ, Cowan C, Schlaeger TM, Rossi DJ (2010) Highly efficient reprogramming to pluripotency and directed differentiation of human cells with synthetic modified mRNA. Cell Stem Cell 5: 618-630.
  • Warren L, Ni Y, Wang J, Guo (2012) Feeder-free derivation of human induced pluripotent stem cells with messenger RNA. Sci Rep 2: 657.
  • Wilson KD, Venkatasubrahmanyam S, Jia F, Sun N, Butte AJ, Wu JC (2009) MicroRNA profiling of human-induced pluripotent stem cells. Stem Cells Dev 18: 749-758.
  • Wu, X, Li, Y, Crise, B, Burgess SM (2003) Transcription start regions in the human genome are favored targets for MLV integration. Science 300: 1749-1751.
  • Xu N, Papagiannakopoulos T, Pan G, Thomson JA, Kosik KS (2009) MicroRNA-145 regulates OCT4, SOX2, and KLF4 and represses pluripotency in human embryonic stem cells. Cell 137: 647-658.
  • Yakubov E, Rechavi G, Rozenblatt S, Givol D (2010) Reprogramming of human fibroblasts to pluripotent stem cells using mRNA of four transcription factors. Biochem Biophys Res Commun 26: 189-193.
  • Yang Y, Liu B, Dong J, Zhang L, Pang M, Rong L (2012) Proteins reprogramming: present and future. Scientific World Journal 453185. [ doi: 10.1100/2012/453185]
  • Yoneyama M, Fujita T (2008) Structural mechanism of RNA recognition by the RIG-I-like receptors. Immunity 29: 178-181.
  • Yoneyama M, Kikuchi M, Natsukawa T, Shinobu N, Imaizumi T, Miyagishi M, Taira K, Akira S, Fujita T (2004) The RNA helicase RIG-I has an essential function in double-stranded RNA-induced innate antiviral respons¬es. Nat Immunol 5: 730-737.
  • Yu J, Hu K, Smuga-Otto K, Tian S, Stewart R, Slukvin II, Thomson JA (2009) Human induced pluripotent stem cells free of vector and transgene sequences. Science 24: 797-801.
  • Zhang H, Ma Y, Gu J, Liao B, Li J, Wong J, Jin Y (2012) Reprogramming of somatic cells via TAT-mediated pro¬tein transduction of recombinant factors. Biomaterials 33: 5047-5055.
  • Zhang Z, Wu WS (2013) Sodium butyrate promotes genera¬tion of human induced pluripotent stem cells through induction of the miR302/367 cluster. Stem Cells Dev 15: 2268-2277.
  • Zhang Z, Gao Y, Gordon A, Wang ZZ, Qian Z, Wu WS (2011) Efficient generation of fully reprogrammed human iPS cells via polycistronic retroviral vector and a new cocktail of chemical compounds. PLoS One 6: e26592.
  • Zhou H, Wu S, Joo JY, Zhu S, Han DW, Lin T, Trauger S, Bien G, Yao S, Zhu Y, Siuzdak G, Schöler HR, Duan L, Ding S (2009) Generation of induced pluripotent stem cells using recombinant proteins. Cell Stem Cell 8: 381¬384.
  • Ziegler A, Nervi P, Durrenberger M, Seelig J (2005) The cationic cell-penetrating peptide CPP(TAT) derived from the HIV-1 protein TAT is rapidly transported into living fibroblasts: optical, biophysical, and metabolic evidence. Biochemistry 44: 138-148.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-61a2e056-8df8-40b4-a4d9-a637bd8535d5
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.