PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2011 | 33 | 3 |

Tytuł artykułu

Salinity tolerance of hydroponically grown Pinus pinea L. seedlings

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
The salinity tolerance and ion transport of 2-month-old seedlings of stone pine (Pinus pinea L.) grown in hydroponic solution containing various concentrations of NaCl (0–100 mM) were studied. The presence of salt of up to 100 mM did not significantly reduce growth. Seedling hydration was insensitive to salinity. High salt concentrations reduced K⁺ and Ca²⁺ uptake, root accumulation, and export to shoots. Na⁺ and Cl⁻ ions, representing the major part of the ionic uptake, were effectively compartmentalized in vacuoles. We concluded that seedlings of stone pine cultivated hydroponically were highly tolerant to salt concentrations of up to 100 mM for a culture period of 38 days. This tolerance was associated with the accumulation of Na⁺ and Cl⁻ ions in the shoots.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

33

Numer

3

Opis fizyczny

p.765-775,fig.,ref.

Twórcy

autor
  • Unit of Research on Management and Valorization of Forest Resources, National Institute of Research on Rural Engineering Water and Forests, INRGREF-BP 10, 2080 Ariana, Tunesia
  • Department of GREF, National Institute of Agronomy of Tunisia, 43, Street of Charles Nicolle,1082 Tunis, Tunisia
autor
  • Unit of Research on Management and Valorization of Forest Resources, National Institute of Research on Rural Engineering Water and Forests, INRGREF-BP 10, 2080 Ariana, Tunesia
  • Unit of Ecophysiology and Plant Nutrition, Department of Biology, Faculty of Siences of Tunis, University of Tunis-El-Manar, 1060 Tunis, Tunesia
  • Department of Bioactive Substances, Center of Biotechnology of Borj Cedria, PB 901, 2050 Hammam-Lif, Tunisia
autor
  • Department of Environmental Horticulture, University of Seoul, Seoul 130-743, Korea
autor
  • Department of GREF, National Institute of Agronomy of Tunisia, 43, Street of Charles Nicolle,1082 Tunis, Tunisia
autor
  • Unit of Ecophysiology and Plant Nutrition, Department of Biology, Faculty of Siences of Tunis, University of Tunis-El-Manar, 1060 Tunis, Tunesia

Bibliografia

  • Asch F, Dingkuhn M, Wittstock C, Doerffling K (1999) Sodium and potassium uptake of rice panicles as affected by salinity and season in relation to yield and yield components. Plant Soil 207:133–145
  • Asch F, Dingkuhn M, Dörffling K, Miezan K (2000) Leaf K/Na ratio predicts salinity induced yield loss in irrigated rice. Euphytica 113:109–118
  • Barhoumi Z, Djebali W, Smaoui A, Chaïbi W, Abdelly Ch (2007) Contribution of NaCl excretion to salt resistance of Aeluropus littoralis (Willd) Parl. J Plant Physiol 164:842–850
  • Ben Amor N, Ben Hamed K, Debez A, Grignon C, Ch Abdelly (2005) Physiological and antioxidant responses of the perennial halophyte Crithmum maritimum to salinity. Plant Sci 168:889–899
  • Bizid E, Zid E, Grignon C (1988) Tolérance à NaCl et séléctivité K⁺/Na⁺ chez les triticales. Agronomie 8:23–27
  • Blits KC, Gallagher JL (1990) Salinity tolerance of Kosteletzkya virginica. I. Shoot growth, ion and water relations. Plant Cell Environ 13:419–425
  • Caines AM, Shennan C (1999) Interactive effects of Ca²⁺ and NaCl salinity on the growth of two tomato genotypes differing in Ca²⁺ use efficiency. Plant Physiol Biochem 37:569–576
  • Causton DR (1991) Plant growth analysis: the variability of relative growth rate within a sample. Ann Bot 67:137–144
  • Chen S, Li J, Fritz E, Wang S, Hüttermann A (2002) Sodium and chloride distribution in roots and transport in three poplar genotypes under increasing NaCl stress. For Ecol Manag 168:217–230
  • Cramer GR, Lauchli A, Politic VS (1985) Displacement of calcium by sodium from the plasmalemma of root cells: primary response to salt stress. Plant Physiol 79:207–211
  • Debez A, Ben Hamed K, Grignon C, Abdelly Ch (2004) Salinity effects on germination, growth, and seed production of the halophyte Cakile maritime. Plant Soil 262:179–189
  • Durand M, Lacan D (1994) Sodium partitioning within the root of soybean. Physiol Plant 91:65–71
  • El Ayeb N, Henchi B, Garrec JP, Rejeb MN (2004) Effets des embruns marins pollutes sur les feuilles d’Acacia cyanophylla Lindl. et d’Eucalyptus gomphocephala DC. du littoral tunisien. Ann For Sci 61:1–9
  • Epron D, Toussaint ML, Badot PM (1999) Effects of sodium chloride salinity on root growth and respiration in oak seedlings. Ann For Sci 56:41–47
  • Flowers TJ, Troke PF, Yeo AR (1977) The mechanism of salt tolerance in halophytes. Annu Rev Plant Physiol 28:89–121
  • Flowers TJ, Hajjibagheri MA, Yeo AR (1991) Ion accumulation in the cell walls of rice plants growing under saline conditions: evidence for the Oertli hypothesis. Plant Cell Environ 14:319–325
  • Fung LE, Wang SS, Altman A, Hüttermann A (1998) Effect of NaCl on growth, photosynthesis, ion and water relations of four poplar genotypes. For Ecol Manag 107:135–146
  • Garcia-Legaz MF, Lopez-Gomez E, Mataix Beneyto J, Navarro A, Sanchez-Blanco MJ (2008) Physiological behaviour of loquat and anger rootstocks in relation to salinity and calcium addition. J Plant Physiol 165:1049–1060
  • Glenn EP, Olsen M, Frye R, Moore D, Miyamoto S (1994) How much sodium accumulation is necessary for salt tolerance in subspecies of the halophyte Atriplex canescens. Plant Cell Environ 17:711–719
  • Gosset DR, Banks SW, Millhollon EP, Lucas MC (1996) Antioxidant response to NaCl stress in a control and an NaCl⁻tolerant cotton cell line grown in the presence of paraquat, buthionine sulfoximine, and exogenous glutathione. Plant Physiol 112:803–809
  • Grattan SR, Grieve CM (1999) Salinity-mineral nutrient relations in horticultural crops. Sci Hortic 78:127–157
  • Greenway H, Munns R (1980) Mechanisms of salt tolerance in nonhalophytes. Annu Rev Plant Physiol 31:149–190
  • Hasegawa PH, Bressan RA, Zhu JK, Bohnert HJ (2000) Plant cellular and molecular responses to high salinity. Ann Rev Plant Physiol Plant Biol Mol 51:463–499
  • Hernandez JA, Campillo A, Jimenez A, Alarcon JJ, Sevilla F (1999) Response of antioxidant systems and leaf water relations to NaCl stress in pea plants. New Phytol 141:241–251
  • Hunt R (1990) Basic growth analysis. Plant growth analysis for beginners. Academic Press, London
  • Ibrahim M, Rapp M (1979) Variation spatio-temporelle de la salinité du sol d’un peuplement de pin pignon du littoral méditerranéen. Ecol Mediter 4:49–60
  • Khan MA, Ungar IA, Showalter AM (2000) Effects of salinity on growth, water relations and ion accumulation in the subtropical perennial halophyte, Atriplex griffithii var. stocksii. Ann Bot 85:225–232
  • Loisel R (1967) Germination du pin pignon au niveau de certaines associations végétales. Contribution à l’étude biologique des pins de la basse provence. Bull Soc Bot Fr 114:163–174
  • Lynch J, Lauchli A (1985) Salt stress disturbs the calcium nutrition of barely (Hordeum vulgare L.). New Phytol 99:345–354
  • M’rah S, Ouerghi Z, Berthomieu C, Havaux M, Jungas C, Hajji M, Grignon C, Lachaˆal M (2006) Effects of NaCl on the growth, ion accumulation and photosynthetic parameters of Thellungiella halophila. J Plant Physiol 163:1022–1032
  • Maas EV (1986) Salt tolerance of plants. Appl Agric Res 1:12–26
  • Mahajan S, Pandey GK, Tuteja N (2007) Calcium- and salt-stress signaling in plants: shedding light on SOS pathway. Arch Biochem Biophys 471:146–158
  • Marschner H (1995) Mineral nutrition of higher plants, 2nd edn. Academic Press, London
  • Martınez JP, Ledent JF, Bajji M, Kinet JM, Lutts S (2003) Effect of water stress on growth, Na and K accumulation and water use efficiency in relation to osmotic adjustment in two populations of Atriplex halimus L. J Plant Growth Regul 41:63–73
  • Meloni DA, Oliva MA, Martinez CA, Cambraia J (2003) Photosynthesis and activity of superoxide dismutase, peroxidase and glutathione reductase in cotton under salt stress. Environ Exp Bot 49:69–76
  • Nasri N, Khaldi A, Fady B, Triki S (2005) Fatty acids from seeds of Pinus pinea L.: composition and population profiling. Phytochemistry 66:1729–1735
  • Rejili M, Vadel AM, Guetet A, Neffatti M (2007) Effect of NaCl on the growth and the ionic balance K⁺/Na⁺ of two populations of Lotus creticus (L.) (Papilionaceae). S Afr J Bot 73:623–631
  • Stassart JM, Neirinck L, Dejaegere R (1981) The interactions between monovalent cations and calcium during their adsorption on isolated cell walls and absorption by intact barely roots. Ann Bot 47:647–652
  • Sun D, Dickinson G (1993) Responses to salt stress of 16 Eucalyptus species, Grevillea robusta, Lophostemon confertus and Pinus caribaea var. hondurensis. For Ecol Manag 60:1–14
  • Tuna AL, Kaya C, Ashraf M, Altunlu H, Yokas I, Yagmur B (2007) The effects of calcium sulphate on growth, membrane stability and nutrient uptake of tomato plants grown under salt stress. Environ Exp Bot 59:173–178
  • Yang F, Xiao X, Zhang S, Korpelainen H, Ch Li (2009) Salt stress responses in Populus cathayana Rehder. Plant Sci 176:669–677
  • Yeo A (1998) Molecular biology of salt tolerance in the context of whole plant physiology. J Exp Bot 49:915–929
  • Zid E, Grignon C (1985) Effets comparés de NaCl, KCl et Na₂SO₄ sur la croissance et la nutrition minérale de jeunes plantes de Citrus aurantium L. Oecologia Plantarum 7:407–416

Uwagi

rekord w opracowaniu

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-6194dfa7-20dc-4881-bb54-51a3cf13cd77
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.