PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2010 | 60 | 2 |

Tytuł artykułu

Differentiation between Lactococcus sp. and Leuconostoc sp. based on RFLP analysis of 16 S rRNA

Treść / Zawartość

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Taxonomic differentiation between Lactococcus sp. and Leuconostoc sp. can sometimes be misleading due to the morphological and biochemical similarities between both genera. Therefore, several molecular techniques have been applied to identify these bacteria. Restriction fragment length polymorphism analysis of PCR-amplified 16S ribosomal RNA gene was used to generate restriction profiles of 9 strains of Lactococcus sp. and 5 of Leuconostoc sp. This method utilizes a set of universal primers for amplification of the 16S rRNA region of typical lactic acid bacteria species. The size of the amplified products was about 1500 bp and the amplicons of the different species could be differentiated from each other with four restriction endonucleases: TaqI, EcoRI, BamHI and HindIII. These restriction enzymes were selected based on nucleotide sequences of 16S rRNA genes for LAB available in databases. Our study demonstrates that DNA of 16S rRNA from strains of Lactococcus sp. contains single restriction site for EcoRI and two restriction sites for TaqI enzymes, 16S rRNA DNA from strains of Leuconostoc sp. contains a single restriction site for each enzyme (HindIII, BamHI) and four restriction sites for TaqI. This result is in good agreement with analysis in silico of 16S rRNA genes published in the National Center for Biotechnology Information (NCBI). These findings led to modify the classification obtained by biochemical methods for five examined strains of lactic acid bacteria. In summary, our study demonstrated that the RFLP analysis applied is a useful method for rapid differentiation between Lactococcus sp. and Leuconostoc sp.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

60

Numer

2

Opis fizyczny

p.133-138,fig.,ref.

Twórcy

autor
  • Institute of Fermentation Technology and Microbiology, Technical University of Lodz, Wolczanska 171/173, 90-530 Lodz, Poland
autor
autor

Bibliografia

  • 1. Anderson D.G., McKay L.L., Simple and rapid method for isolating large plasmid DNA from lactic Streptococci. Appl. Environ. Microbiol., 1983, 46, 549–552.
  • 2. Axelsson L., Lactic Acid Bacteria: Classification and Physiology. 2004, in: Lactic Acid Bacteria: Microbiological and Functional Aspects (eds. S. Salminen, A. von Wright, A. Ouwehand). Marcel Dekker Inc., New York, pp. 1–66.
  • 3. Ben-Amor K., Vaughan E.E., de Vos W.M., Advanced molecular tools for the identification of lactic acid bacteria. J. Nutr., 2007, 137, 741S-747S.
  • 4. Blackwood C.B., Marsh T., Kim S.H., Eldor A.P., Terminal restriction fragment length polymorphism data analysis for quantitative comparison of microbial communities. Appl. Environ. Microbiol., 2003, 69, 926–932.
  • 5. Deveau H., Moineau S., Use of RFLP to characterize Lactococcus lactis strains producing exopolysaccharides. J. Dairy Sci., 2003, 86, 1472–1475.
  • 6. Dickson E.M., Riggio M.P., Macpherson L., A novel species-specific PCR assay for identifying Lactobacillus fermentum. J. Med. Microbiol., 2005, 54, 299–303.
  • 7. Gonzalez A., Moreno Y., Gonzalez R., Hernandez J., Ferrus M.A., Development of a simple and rapid method based on polymerase chain reaction–based restriction fragment length polymorphism analysis to differentiate Helicobacter, Campylobacter, and Arcobacter species. Curr. Microbiol., 2006, 53, 416–421.
  • 8. Holzapfel W.H., Haberer P., Geisen R., Björkroth J., Schillinger U., Taxonomy and important features of probiotic microorganisms in food and nutrition. Am. J. Clin. Nutr., 2001, 73, 365–373.
  • 9. Jang J., Kim B., Lee J., Han H., A rapid method for identification of typical Leuconostoc species by 16S rDNA PCR-RFLP analysis. J. Microbiol. Methods, 2003, 55, 295–302.
  • 10. Kim B., Lee J., Jang J., Kim J., Han H., Leuconostoc inhae sp. nov., a lactic acid bacterium isolated from kimchi. Int. J. Sys. Evolution. Microbiol., 2003, 53, 1123–1126.
  • 11. Klaenhammer T., Alterman E., Arigoni F., Bolotin A., Breidt F., Broadbent J., Cano R., Chaillou S., Deutscher J., Gasson M., van de Guchte M., Guzzo J., Hartke A., Hawkins T., Hols P., Hutkins R., Kleerebezem M., Kok J., Kuipers O., Lubbers M., Maguin E., McKay L., Mills D., Nauta A., Overbeek R.,. Pel H, Pridmore D., Saier M., de Vos W., Weimer B., Zagorec M., Siezen R., Discovering lactic acid bacteria by genomics. Antonie van Leeuwenhoek, 2002, 82, 29–58.
  • 12. Klaenhammer T.R., Barrangou R., Buck B.L., Azcarate-Peril M.A., Altermann E., Genomic features of lactic acid bacteria effecting bioprocessing and health. FEMS Microbiol. Rev., 2005, 29, 393–409.
  • 13. Kleerebezem M., Boels I.C., Nierop Groot M., Mierau I., Sybesma W., Hugenholtz J., Metabolic engineering of Lactococcus lactis: the impact of genomics and metabolic modelling. J. Biotechnol., 2002, 98, 199–213.
  • 14. Le Jeune C., Lonvaud-Funel A., Lactobacillus hilgardii and Lactobacillus brevis DNA analysis by restriction fragment length polymorphism (RFLP). Food Microbiol., 1994, 11, 195–202.
  • 15. Miteva V., Boudakov I., Ivanova-Stoyancheva G., Marinova B., Mitev V., Mengaud J., Differentiation of Lactobacillus delbrueckii subspecies by ribotyping and amplified ribosomal DNA restriction analysis (ARDRA). J. Appl. Microbiol., 2001, 90, 909–918.
  • 16. O’Sullivan D.J., Methods for analysis of the intestinal microflora. Curr. Issues Intest. Microbiol., 2000, 1, 39–50.
  • 17. Randazzo C.I., Caggia C., Neviani E., Application of molecular approaches to study lactis acid bacteria in artisanal cheese. J. Microbiol. Meth., 2009, 78, 1–9.
  • 18. Randazzo C.L., Restuccia C.A., Romano A.D., Caggia C., Lactobacillus casei, dominant species in naturally fermented Sicilian green olives. Int. J. Food Microbiol., 2004, 90, 9–14.
  • 19. Rodas A.M., Ferrer S., Pardo I., Polyphasic study of wine Lactobacillus strains: taxonomic implications. Int. J. Sys. Evolution. Microbiol., 2005, 55, 197–207.
  • 21. Saikaly P.E., Stroot P.G., Oerther D.B., Use of 16S rRNA terminal restriction fragment analysis to assess the impact of solids retention time on the bacterial diversity of activated sludge. Appl. Environ. Microbiol., 2005, 71, 5814–5822.
  • 22. Walczak P., Biniaszczyk A., Konopacka M. Ołtuszak-Walczak E., Wykorzystanie analizy sekwencji insercyjnych ISS1, IS946, IS904 oraz minimalnych replikonów typu theta do różnicowania bakterii mlekowych. 2003, in: Materiały Naukowe Sympozjum, Bakterie Fermentacji Mlekowej – Metabolizm, Genetyka, Wykorzystanie. Spała (ed. Z. Libudzisz, P. Walczak, J. Bardowski) Institute of Fermentation Technology and Microbiology, Technical University of Lodz, Lodz, Poland, pp.62-71 (in Polish).
  • 23. Yanagida F., Chen Y., Shinohara T., Isolation and characterization of lactic acid bacteria from soils in vineyards. J. Gen. Appl. Microbiol., 2005, 51, 313–318.
  • 24. Yu J., Zhihong S., Liu W., Zhang J., Sun T., Bao Q., Zhang H., Rapid identification of lactic acid bacteria isolated from homemade fermented milk in Tibet. J. Gen. Appl. Microbiol., 2009, 55, 181–190.
  • 25. Zhang Z., Schwartz S., Wagner L., Miller W., A greedy algorithm for aligning DNA sequences. J. Comput. Biol., 2000, 7, 203–214.

Uwagi

PL
Rekord w opracowaniu

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-61751805-33d3-4920-a3ab-2277f98c52ab
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.