PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2012 | 61 | 4 |

Tytuł artykułu

In vitro study of secreted aspartyl proteinases Sap1 to Sap3 and Sap4 to Sap6 expression in Candida albicans pleomorphic forms

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Transition from round budding cells to long hyphal forms and production of secreted aspartic proteases (Saps) are considered virulenceassociated factors of Candida albicans. Although plenty of data dealing with Saps involvement in the infection process have been published, Saps expression by the different pleomorphic forms as well as the capacity of C. albicans filaments to express Sap1-6 under serum influence are poorly investigated. In this study, we used immunofluorescence and immunoelectron microscopy for the detection of Sap1-6 isoenzymes in C. albicans pleomorphic cells (blastoconidia, germ tubes, pseudohyphae, true hyphae) grown in Sap-inductive human serum and Sap non-inductive medium – yeast extract-peptone-glucose (YEPD). Isoenzymes were below the detection level in all blastoconidial cells grown in YEPD for 18 h. Sap1-6 expression was hardly detected in C. albicans cells cultivated in serum for 20 min. Increasing level of Sap1-6 expression was observed when C. albicans was incubated for 2, 6 and 18 h in serum corresponding to the development of germ tubes, pseudohyphae and true hyphae. !e expression of Sap1-3 in pseudohyphae and true hyphae was more intensive compared to Sap4-6. !us, we could show that human serum induced hyphae formation and the expression of Sap1-6 were co-regulated.

Wydawca

-

Rocznik

Tom

61

Numer

4

Opis fizyczny

p.247-256,fig.,ref.

Twórcy

  • Independent Laboratory of Streptomyces and Fungi Imperfecti, National Institute of Public Healt - National Institute of Hygiene, Chocimska 24, 00-791 Warsaw, Poland
autor
  • Independent Laboratory of Streptomyces and Fungi Imperfecti, National Institute of Public Healt - National Institute of Hygiene, Chocimska 24, 00-791 Warsaw, Poland
autor
autor
autor
autor
  • Independent Laboratory of Streptomyces and Fungi Imperfecti, National Institute of Public Healt - National Institute of Hygiene, Chocimska 24, 00-791 Warsaw, Poland

Bibliografia

  • Abegg M.A., R. Lucietto, P.V.G. Alabarse, M.F.A. Mendes and M.S. Benfato. 2011. Differential Resistance to oxidants and production of hydrolytic enzymes in Candida albicans. Mycopathologia. 171: 35–41.
  • Amberg D.C. and D.J. Burke. 2005. Yeast DNA isolation, techniques and protocols 3, p.17. In: Amberg D.C. and D.J. Burke (eds.), Methods in yeast genetics. Cold Spring Harbor Laboratory Press, Cold Spring Harbor.
  • Argimón S., J.A. Wishart, R. Leng, S. Macaskill, A. Mavor, T. Alexandris, S. Nicholls, A.W. Knight, B. Enjalbert, R. Walmsley, F.C. Odds, N.A.R. Gow and A.J. Brown. 2007. Developmental regulation of an adhesin gene during cellular morphogenesis in the fungal pathogen Candida albicans. Eukaryotic Cell. 6: 682–692.
  • Barnett J.A. 2008. A history of research on yeasts 12: medical yeasts part I, Candida albicans. Yeast 25: 385–417.
  • Brown A.J.P. 2002. Expression of growth form-specific factor during morphogenesis in Candida albicans, pp. 87–93. In: Calderone R.A. (eds.), Candida and candidiasis, ASM Press, Washington, DC. Chen Y.C., C.C. Wu, W.L. Chung and F.J.S. Lee. 2002. Differential secretion of Sap4-6 proteins in Candida albicans during hyphae formation. Microbiol. 148: 3743–3754.
  • Copping V.M.S., C.J. Barelle, B. Hube, N.A.R. Gow, A.J.P. Brown and F. Odds. 2005. Exposure of Candida albicans to antifungal agents affects expression of SAP2 and SAP9 secreted proteinase genes. J. Antimicrob. Chemother. 55: 645–654.
  • Correia A., U. Lerman, L. Teixeira, F. Cerca, S. Botelho, R.M.G. Da Costa, P. Sampaio, F. Gärtner, J. Morshhäuser, M. Vilanova and others. 2010. Limited role of secreted aspartyl proteinases Sap1 to Sap6 in Candida albicans virulence and host immune response in murine hematogenously disseminated candidiasis. Infect. Immun. 78: 4839–4849.
  • Dalle F., B. Wächter, C. L’Ollivier, G. Holland, N. Bannert, D. Wilson, C. Labruére, A. Bonnin and B. Hube. 2010. Cellular interactions of Candida albicans with human oral epithelial cells and enterocytes. Cell Microbiol. 12: 248–71.
  • Décanis N., N. Tazi, A. Correia, M. Vilanova and M. Rouabhia. 2011. Farnesol, a fungal quorum-sensing molecule triggers Candida albicans morphological changes by downregulating the expression of different secreted aspartyl proteinase genes. !e Open Microbiology Journal. 5: 119–126.
  • Felk A., M. Kretschmar, A. Albrecht, M. Schaller, S. Beinhauser, T. Nichterlein, D. Sanglard, H.C. Korting, W. Schäfer and B. Hube. 2002. Candida albicans hyphal formation and the expression of the Efg1-regulated proteinases Sap4 to Sap6 are required for the invasion of parenchymal organs. Infect. Immun. 70: 3689–3700.
  • Fradin Ch., M. Kretschmar, T. Nitchterlein, C. Gaillardin, Ch. d’Enfert and B. Hube. 2003. Stage-specific gene expression of Candida albicans in human blood. Mol. Microbiol. 47: 1523–1543.
  • Gillum A.M., E.Y. Tsay and D.R. Kirsch. 1984. Isolation of the Candida albicans gene for ortodine-5’-phosphate decarboxylase by complementation of Saccharomyces cerevisiae ura3 and Eschericha coli pyrF mutations. Mol. Gen. Genet. 198: 179–182.
  • Gow N.A.R. 2002. Cell biology and cell cycle of Candida, pp. 145–158. In: Calderone R.A. (eds.), Candida and Candidiasis, ASM Press, Washington D.C.
  • Gropp K., L. Schild, S. Schindler, B. Hube, P.F. Zipfel and C. Skerka. 2009. !e yeast Candida albicans evades human complement attack by secretion of aspartic proteases. Mol. Microbiol. 47: 465–475.
  • Hayek P., L. Dib, P. Yazbeck, B. Beyrouthy, R.A. Khalaf. 2010. Characterization of Hwp2, a Candida albicans putative GPI-anchored cell wall protein necessary for invasive growth. Microbiol Res. 165: 250–258.
  • Hornbach A., A. Heyken, L. Schild, B. Hube, J. Löffer and O. Kurzai. 2009. The glycosylphosphatidylinositol-anchored protease Sap9 modulates the interaction of Candida albicans with human neutrophils. Infect. Immune. 77: 1–9.
  • Hube B., M. Monod, D.A. Schofield, A.J. Brown and N.A.R. Gow. 1994. Expression of seven members of the gene family encoding secretory aspartic proteinases in Candida albicans. Mol. Microbiol. 14: 87–99.
  • Hube B. 2004. From commensal to pathogen: stage- and tissuespecific gene expression of Candida albicans. Curr. Opin. Microbiol. 7: 336–341.
  • Jackson B.E., K.R. Wilhelmus and B. Hube. 2007. The role of secreted aspartyl proteinases in Candida albicans keratitis. IOVS. 48: 3559–3565.
  • Kumamoto C.A.and M.D. Vinces. 2005a. Alternative Candida albicans lifestyles: Growth on surface. Annu. Rev. Microbiol. 59: 113–130.
  • Kumamoto C.A. and M.D. Vinces. 2005b. Contributions of hyphae and hypha-co-regulated genes to Candida albicans virulence. Annu. Rev. Microbiol. 7: 1546–1554.
  • Leinberger D.M., U. Schumacher, I.B. Autenrieth and T.T. Bachmann. 2005. Development of a DNA Microarray for Detection and Identification of Fungal Pathogens Involved in Invasive Mycoses. J. Clin. Microbiol. 43: 4943–4953.
  • Lermann U. and J. Morschhäuser. 2008. Secreted aspartic proteases are not required for invasion of reconstituted human epithelia by Candida albicans. Microbiol. 154: 3281–3295.
  • Luo G. and T.G. Mitchell. 2002. Rapid identification of pathogenic fungi directly from cultures by using multiplex PCR. J. Clin. Microbiol. 40: 2860–2865.
  • Monod M., G. Togni, B. Hube, and D. Sanglard. 1994. Multiplicity of genes encoding secreted aspartic proteases in Candida species. Mol. Microbiol. 13: 357–368.
  • Monod M., Togni, B. Hube, D. Heß, D. Sanglard. 1998. Cloning, sequencing, and expression of two new members of the secreted aspartic proteinase family of Candida albicans. Microbiology. 144: 2731–2737.
  • Morrison C.J., S.F. Hurst and E. Reiss. 2003. Competitive binding enzyme-linked immunosorbent assay that uses the secreted aspartyl proteinase of Candida albicans as an antigenic marker for diagnosis of disseminated candidiasis. Clin. Diagn. Lab. Immunol. 10: 835–848.
  • Naglik J.R., G. Newport, T.C. White, L.L. Fernandes-Naglik, J.S. Greenspan, D. Greenspan, S.P. Sweet, S.J. Challacombe and N. Agabian. 1999. In vivo analysis of secreted aspartyl proteinases expression in human oral candidiasis. Infect Immun. 67: 2482–2490.
  • Naglik J.R., S.J. Challacombe and B. Hube. 2003. Candida albicans secreted aspartyl proteases in virulence and pathogenesis. Microbiol. Mol. Biol. Rev. 67: 400–428.
  • Naglik J.R., D. Moyes, J. Makwana, P. Kanzaria, E. Tsichlaki, G. Weindl, A.R. Tappuni, C.A. Roggers, A.J. Woodman, S.J. Challacombe and others. 2008. Quantitative expression of the Candida albicans secreted aspartyl proteinase gene family in human oral and vaginal candidiasis. Microbiol. 154: 3266–3280.
  • Ness F., V. Prouzet-Mauleon, A. Vieillemard, F. Lefebvre, T Noël, M. Crouzet, F. Doignon and D. Thoraval. 2010. The Candida albicans Rgd1 is a RhoGAP protein involved in the control of filamentous growth. Fungal Genet Biol 47: 1001–1011.
  • Okawa Y., M. Miiiyauchi, S. Takahashi and H. Kobayashi. 2007. Comparison of pathogenicity of various Candida albicans and C. stellatoidea strains. Biol. Pharm. Bull. 30: 1870–1873.
  • Raška M., J. Beláková, M. Krupka and E. Weigl. 2007. Candidiasis – do we need to fight or to tolerate the Candida fungus? Folia Microbiol. 52: 297–312.
  • Schaller M., W. Schafer, C. Korting and B. Hube. 1998. Differential expression of secreted aspartyl proteinases in model of human oral candidiosis and in patient samples from oral cavity. Mol. Microbiol. 29: 605–615.
  • Schaller M., H.C. Korting, W. Schäfer, J. Bastert, W. Chen and B. Hube. 1999. Secreted aspartic proteinase (Sap) activity contributes to tissue damage in a model of human oral candidiasis. Mol. Microbiol. 34: 169–180.
  • Schaller M., C. Schackert, H.C. Korting, E. Janusche and B. Hube. 2000. Invasion of Candida albicans correlates with expression of secreted aspartic proteinases during experimental infection of human epidermis. J. Invest. Dermatol. 114: 712–717.
  • Schaller M., E. Januschke, C. Schackert, B. Woerle and H.C. Korting. 2001. Different isoforms of secreted aspartyl proteinases (Sap) are expressed by Candida albicans during oral and cutaneous candidiosis in vivo. J. Med. Microbiol. 50: 743–747.
  • Schild L., A. Heyken, P.W.J. de Groot, E. Hiller, M. Mock, C. de Koster, U. Horn, S. Rupp and B. Hube. 2001. Proteolytic cleavage of covalently linked cell wall proteins by Candida albicans Sap9 and Sap10. Eukaryot Cell. 10: 98–109.
  • Staib P., S. Wirsching, A. Strauß and J. Morschhäuser. 2001. Gene regulation and host adaptation mechanisms in Candida albicans. Int. J. Med. Microbiol. 291: 183–188.
  • Staniszewska M., M. Bondaryk and W. Kurzatkowski. 2011a. Morphotypes of Candida albicans. Phase-contrast microscopy. Med. Mycol. 18: 5–10.
  • Staniszewska M., D. Rabczenko and W. Kurzatkowski. 2011b. Discrimination between the enzymatic activities of Candida albicans pleomorphic forms determined using the api® ZYM test. Mycoses 54: e744–e750. doi:10.1111/j.1439–0507.2010.02011.x
  • Stringaro A., P. Crateri, G. Pellegrini, G. Arancia, A. Cassone and F. De Bernardis. 1997. Ultrastructural localization of the secretory aspartyl proteinase in Candida albicans cell wall in vitro and in experimentally infected rat vagina. Mycopathologia 137: 95–105.
  • Sullivan D.J., T.J. Westerneng, K.A. Haynes, D.E. Bennett and D.C. Coleman. 1995. Candida dubliniensis sp. nov.: Phenotypic and molecular characterization of a novel species associated with oral candidosis in HIV-infected individuals. Microbiology 141: 1507–1521.
  • Taylor B.N., C. Fichtenbaum, M. Saavedra, J. Slavinsky III, R. Swoboda, K. Wozniak, A. Arribas, W. Powderly and P.L. Fidel Jr. 2000. In vivo virulence of Candida albicans isolates causing mucosal infections in people infected with the human immunodeficiency virus. J. Infect. Dis. 182: 955–959.
  • Taylor B.N., H. Hannemann H., M. Sehnal, A. Biesemeier, A. Schweizer, M. Röllinghoff and K. Schröppel. 2005. Induction of SAP7 correlates with virulence in an intravenous infection model of candidiasis but not in a vaginal infection model in mice. Infect Immun. 73: 7061–7063.
  • Tongchusak S., V. Brusic and S.C. Chaiyaroj. 2008. Promiscuous T cell epitope prediction of Candida albicans secretory aspartyl proteinase family of proteins. Infect. Genetics Evolution. 8: 467–473.
  • Whiteway M. and C. Bachewich. 2007. Morphogenesis in Candida albicans. Annu. Rev. Microbiol. 61: 529–553.
  • Wise M.G., M. Healy, K. Reece, R. Smith, D. Walton, W. Dutch, A. Renwick, J. Huong, S. Young, J. Tarrand and others. 2007. Species identification and strain differentiation of clinical Candida isolates using the DiversiLab system of automated repetitive sequencebased PCR. J. Med. Microbiol. 56: 778–787.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-616f25de-23a2-43f4-9aa7-4c7e0f286ab4
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.