PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2019 | 28 | 3 |

Tytuł artykułu

Modelling velocity distributions and river bed changes using computer code SSIIM below sills stabilizing the riverbed

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
The aim of this study was risk assessment regarding the local scours below sills that stabilize the Warta riverbed below Jeziorsko Reservoir. The studied river sills were constructed due to the reduction of riverbed erosion that took place downstream behind the dam reservoir. The research area embraced two reaches: in the vicinity, sills No. 3 (km 480+902) and No. 4 (km 479+225) were built in order to reduce local and general riverbed erosion resulting from the construction of the reservoir. The current article presents the methodology of the conducted field research and a short description of the applied mathematical model SSIM (a three-dimensional numerical model for simulating sediment movements in water intakes with multiblock options). Based on field geometry measurements of the local scour holes, the distribution of water velocity, and the water levels in the period 2006-2010, calculations of velocity distributions at the sill have been carried out using SSIIM software. The computer simulations have shown that the calculated water velocity profiles did not differ significantly from the measured ones.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

28

Numer

3

Opis fizyczny

p.1165-1179,fig.,ref.

Twórcy

  • Department of Hydraulic and Sanitary Engineering, Faculty of Land Reclamation and Environmental Engineering, Poznan University of Life Sciences, Poznan, Poland
autor
  • Department of Hydraulic and Sanitary Engineering, Faculty of Land Reclamation and Environmental Engineering, Poznan University of Life Sciences, Poznan, Poland
autor
  • Department of Geoinformation Photogrammetry and Remote Sensing of Environment and Department of Environmental Management and Protection, University of Science and Technology, Krakow, Poland
autor
  • Department of Geoinformation Photogrammetry and Remote Sensing of Environment and Department of Environmental Management and Protection, University of Science and Technology, Krakow, Poland
autor
  • Department of Hydraulic and Sanitary Engineering, Faculty of Land Reclamation and Environmental Engineering, Poznan University of Life Sciences, Poznan, Poland

Bibliografia

  • 1. Bisantino T., Gentile F., Milella P., Liuzzi G.T. Effect of time scale on the performance of different sediment transport formulas in a semiarid region. Journal of Hydraulic Engineering.. 136, 1, 56, 2009.
  • 2. Wierzbicki M., Hämmerling M., Przedwojski B. The influence of weirs on the formation of the water level and the bottom level downstream of Jeziorsko reservoir. Water Management. 6, 239, 2011.
  • 3. Laks I., Kałuża T., Sojka M., Walczak Z., Wróżyński R. Problems with Modelling Water Distribution in Open Channels with Hydraulic Engineering Structures, RocznikOchronaŚrodowiska 15, 245, 2013.
  • 4. Nieć J., Zawadzki P., Walczak Z., Spychała M. Calculating earth dam seepage using HYDRUS software applications.Acta Sci. Pol. FormatioCircumiectus, [In Press].
  • 5. Dysarz T., Wicher-Dysarz J. Application of hydrodynamic simulation and frequency analysis for assessment of sediment deposition and vegetation impacts on floodplain inundation. Polish Journal of Environmental Studies. 20 (6), 1441, 2011,
  • 6. Urbański J., Siwicki P. The application of a computer software FLUENT CFD, for the calculation of the characteristics of turbulence in downstream of weir. Infrastructure and ekology of rural areas. 2 (4), 201, 2007.
  • 7. Cellino M., Graff W.H. Experiments on suspension flow in open channels with bed forms. Journal of Hydraulic Research. 38 (4), 289, 2000.
  • 8. Termini D., Sammartano V. Flow kinematic characteristics in the scour hole downstream of a grade – control structure In Congress on Environmental Modelling and Software Modelling for Environment’s Sake. 2010.
  • 9. Urbański J. Eksperymentalne badania wpływu szykan na długość odskoku hydraulicznego. Acta Sci. Pol., FormatioCircumiectus, 14 (1), 189, 2015.
  • 10. Termini D. Bed scouring downstream of hydraulic structures under steady flow conditions: Experimental analysis of space and time scales and implications for mathematical modelling. Catena. 84 (3), 125, 2011.
  • 11. Radecki-Pawlik A., Radecki-Pawlik B. Wyznaczenie bezwymiarowej wartości parametru początku ruchu rumowiska wleczonego za pomocą wybranych formuł empirycznych. Acta Sci. Pol., FormatioCircumiectus, 14 (4), 95, 2015.
  • 12. Liriano Sarah L., Day Rodney A., Rodney White W. Scour at culvert outlets as influenced by the turbulent flowstructure. Journal of Hydraulic Research. 40 (3), 367, 2002.
  • 13. Oliveto G.,Comuniello V., Bulbule T. Time-dependent local scour downstream of positive-step stilling basins. Journal of Hydraulic Research. 49 (1), 105, 2011.
  • 14. D`Agostino V., Ferro V. Scour on alluvial bed downstream of grade-control structures. Journal of Hydraulic Engineering. 130 (1), 24, 2004.
  • 15. Espa P., Sybilla S. Experimental study of the scour regimes downstream of apron for intermediate tailwater depths. River Flow. Taylor & Fransis Group, London, ISSN: 1735-3572.1715-1717. 2006.
  • 16. Chen Z., Shao X., Zhang J. Experimental study on the upstream water level rise and downstream scour length of a submerged dam. Journal of Hydraulic Research. 43 (6), 703, 2005.
  • 17. Bennett S.J., Alonso C.V. Turbulent flow and bed pressure within headcut scour holes due to plane reattached jets. Journal of Hydraulic Research. 44 (4), 510, 2006.
  • 18. Shen L., Lu C., Wu W., Xue S. High-Order Numerical Method to Study Three-Dimensional Hydrodynamics in a Natural River. Advances in Applied Mathematics and Mechanics. 605, 180, 2015.
  • 19. Barrios-Piña H., Ramírez-León H., Rodríguez-Cuevas C., Couder-Castañeda C. Multilayer Numerical Modelling of Flows through Vegetation Using a Mixing-Length Turbulence Model, Water. 6, 2084, 2014.
  • 20. Salem-Said A.H., Fayed H., Ragab S. Numerical Simulations of Two-Phase Flow in a Dorr-Oliver Flotation Cell Model. Minerals. 3 (3), 284, 2013.
  • 21. Kaiglová J., Langhammer J., Jiřinec P., Janský B., Chalupová D. Numerical simulations of heavily polluted fine-grained sediment remobilization using 1D, 1D+, and 2D channel schematization. Environmental Monitoring and Assessment. 187 (3), 1, 2015.
  • 22. Elhakeem M., Sattar A. An entrainment model for non-uniform sediment. Earth Surface Processes and Landforms. 40 (9), 1216, 2015.
  • 23. Dysarz T., Wicher-Dysarz J., Sojka M. Two approaches to forecasting of sedimentation in the Stare Miasto reservoir, Poland. Reservoir Sedimentation.ISBN 978-1-138-02675-9.119-127. 2014.
  • 24. Plesiński K., Marek A., Skalicz F., Radecki-Pawlik A. Wykorzystanie modelu komputerowego basegrain do analizy składu granulometrycznego rumowiska wleczonego potoku ponikiewka metodą fotograficzną. Acta. Sci. Pol., Formatio Circumiectus, 16 (1), 107, 2017
  • 25. Tregnaghi M., Marion A., Bottacin-Busolin A., Tait S.J. Modelling time varying scouring at bed sills. Earth Surface Processes and Landforms. 36 (13), 1761, 2011.
  • 26. Zahiri A., Azamathulla H.M., Ghorbani K. Prediction of local scour depth downstream of bed sills using soft computing models. In Computational Intelligence Techniques in Earth and Environmental Sciences. 197-208. Springer Netherlands.2014.
  • 27. Jafari E., Hassunizadeh H., Zaredehdasht E., Kiuani M. Estimating Scour Depth Around Bridge Piles Using Ssiim Software and Comparingits Results with Physical Model Results. Australian Journal of Basic and Applied Sciences. 5 (7), 167, 2011.
  • 28. Zinke P., Olsen N.R.B., Bogen J., Rüther N. 3D modelling of the flow distribution in the delta of Lake Øyeren, Norway. Hydrology Research. 41 (2) 92, 2010.
  • 29. Wilson C.A.M.E., Baxall J.B., Guymer I., Olsen N.R.B. Validation of a Three-Dimensional Numerical Code in the Simulation of Pseudo-Natural Meandering Flows. Journal of Hydraulic Engineering. 129 (10), 758, 2003.
  • 30. Hämmerling M., Błażejewski R., Walczak N. Modelling of local scour in non-cohesive soils below sills using SSIIM computer code. RocznikOchronaŚrodowiska. 15 (1), 538, 2013.
  • 31. Kasprzak K. Integrative methods of flow measurement. IMGW, Warszawa. 2003.
  • 32. Bugajski P., Chmielowski K., Kaczor G. Optimizing the Percentage of Sewage from SepticTanks for Stable Operation of a Wastewater Treatment Plant. Polish Journal of EnvironmentalStudies, 25 (4), 2016.
  • 33. Chmielowski K., Ślizowski R. Effect of grain-size distribution of sand on the filtrate quality invertical-flow filters. PrzemysłChemiczny. 87 (5), 432, 2008.
  • 34. Olsen N.R.B. A three dimensional numerical model for simulation of sediments movements in water intakes with multiblock options. The Norwegian University of Science and Technology. http://folk.ntnu.no/nilsol/ssiim/manual3.pdf. 2009.
  • 35. Van Rijn L.C. Mathematical modelling of morphological processes in the case of suspended sediment transport. Ph. D. thesis. Delft University of Technology. 1987.
  • 36. Radecki-Pawlik A., Książek L. The morphology and morphodynamics of sand-gravel subaquatic dunes: the Raba River estuary, Poland. GEOREVIEW: Scientific Annals of Stefan cel Mare University of Suceava. Geography Series. 21 (1), 8, 2012.
  • 37. Olsen N.R.B. Numerical Modelling and Hydraulics. The NorvegianUniverity of Science and Technology. ISBN 82-7598-074-7.2007.
  • 38. Przedwojski B., Błażejewski R., Pilarczyk K.W. River training techniques: fundamentals, design and applications. AA Balkema. Rotterdam. 1995.
  • 39. Brooks H.N. Discussed of “Boundary Shear Stresses in Curved Trapezoidal Channels”, by Ippen A. T. and Drinker P. A., ASCE Journal of Hydraulic Engineering. 89, 3, 1963.
  • 40. Błażejewski R. Forecasting the local scour of non-cohesive soils below the sluice gate. Yearbooks of Agricultural University of Poznan. UR – Publisher. 190, 1989.
  • 41. Hämmerling M. Forecasting the erosion changes in the bottom of the riverbed downstream of the weirs. Doctoral thesis. manuscript: University of Life Science in Poznań. 2012.
  • 42. Hillebrand G., Klassen I., Olsen N.R.B. 3D CFD modelling of velocities and sediment transport in the Iffezheim hydropower reservoir, Hydrology Research, 47 (4), 2015.
  • 43. Kurnatowski J. Comparison of analytical and numerical solutions for steady, gradually varied openchannel flow. Pol. J. Environ. Stud 20 (4), 925, 2011.
  • 44. Harb G., Haun S., Schneider J., Olsen N.R.B. Numerical analysis of synthetic granulate deposition in a physical model study. International Journal of Sediment Research 29 (1), 110, 2014.
  • 45. Khosronejad A.,Kozarek J.L., Sotiropoulos F. Simulation-Based Approach for Stream Restoration Structure Design: Model Development and Validation. Journal of Hydraulic Engineering. 140 (9), 04014042, 2014.
  • 46. Xia J., Lin B., Falconer R. A., Wang G. Modelling dam-break flows over mobile beds using a 2D coupled approach. Advances in Water Resources. 33 (2), 171, 2010.
  • 47. Puleo J.A., Lanckriet T., Conley D., Foster D. Sediment transport partitioning in the swash zone of a large-scale laboratory beach. Coastal Engineering, 113, 73, 2016.
  • 48. Chen X., Li Y.,Niu X., Li M., Chen D., Yu X. A general two-phase turbulent flow model applied to the study of sediment transport in open channels. International Journal of Multiphase Flow. 37 (9), 1099, 2011.
  • 49. Dysarz T., Wicher-Dysarz J. Application of hydrodynamic simulation and frequency analysis for assessment of sediment deposition and vegetation impacts on floodplain inundation. Pol. J. Environ. Stud, 20 (6), 1441, 2011.
  • 50. Fang H.W., Lai R.X., Lin B.L., Xu X.Y., Zhang F.X., Zhang Y.F. Variational-based data assimilation to simulate sediment concentration in the Lower Yellow River, China. Journal of Hydrologic Engineering, 21 (5), 04016010, 2016.
  • 51. Mosselman E., Le T.B. Five common mistakes in fluvial morphodynamicmodelling. Advances in Water Resources. 93, 15, 2016.
  • 52. Nicholas A.P., Ashworth P.J., Sambrook Smith G.H., Sandbach S.D. Numerical simulation of bar and island morphodynamics in anabranching megarivers. Journal of Geophysical Research: Earth Surface, 118 (4), 2019, 2013.
  • 53. Knighton D. Fluvial forms and processes: a new perspective. Routledge. ISBN: 13:978-0-340-66313-4.2014.
  • 54. Julien P.Y. Erosion andsedimentation. Cambridge University Press. ISBN 978-0-521-83038-6. 2010.
  • 55. Sun R., Xiao H. SediFoam: A general-purpose, open-source CFD–DEM solver for particle-laden flow with emphasis on sediment transport. Computers & Geosciences, 89, 207, 2016.
  • 56. Michalik A., Ksiazek L. Dynamics of water flow on degraded sectors of Polish mountain stream channels. Polish Journal of Environmental Studies, 18 (4), 665, 2009.
  • 57. Gnatowska R. A study of downwash effects on flow and dispersion processes around buildings in tandem arrangement. Polish Journal of Environmental Studies 24 (4), 2015.
  • 58. Van der Wegen M., Jaffe B.E. Towards a probabilistic assessment of process-based, morphodynamic models. Coastal Engineering, 75, 52, 2013.
  • 59. Olsen N.R.B. A three dimensional numerical model for simulation of sediments movements in water intakes with multiblock options - Users’ Manual. The Norwegian University of Science and Technology. 2014.
  • 60. Kitsikoudis V., Sidiropoulos E., Hrissanthou V. Assessment of sediment transport approaches for sandbed rivers by means of machine learning. Hydrological Sciences Journal, 60 (9), 1566, 2015.
  • 61. Kasperek R. Changes in the meandering Upper Odra River as a result of flooding Part I. Morphology and biodiversity. Pol. J. Environ. Stud 24, No. 6, 2459, 2015.
  • 62. Khosronejad A., Kang S.,Sotiropoulos F. Experimental and computational investigation of local scour around bridge piers. Advances in Water Resources. 37, 73, 2012.
  • 63. Beheshti A.A., Ataie-Ashtiani B. Scour hole influence on turbulent flow field around complex bridge piers. Flow, Turbulence and Combustion, 97 (2), 451, 2016.
  • 64. Biscarini C., Di Francesco S., Manciola P. CFD modelling approach for dam break flow studies. Hydrology and Earth System Sciences, 14 (4), 705, 2010.
  • 65. Ghosh S., Pratihar D.K., Maiti B., Das P.K. An evolutionary optimization of diffuser shapes based on CFD simulations. International journal for numerical methods in fluids, 63 (10), 1147, 2010.
  • 66. Hu H., Wang K.H. Modelling flows and sediment concentrations in a sloping channel with a submerged outlet using a hybrid finite-analytic approach. Computers & Fluids. 44 (1), 9, 2011.
  • 67. Teraguchi H., Nakagawa H., Kawaike K., Yasuyuki B., Zhang H. Effects of hydraulic structures on river morphological processes. International Journal of Sediment Research. 26 (3), 283, 2011.
  • 68. Noh J., Lee S., Kim J.S., Molinas A. Numerical modelling of flow and scouring around a cofferdam. Journal of Hydro-environment Research. 6 (4), 299, 2012.
  • 69. Zhang H., Nakagawa H., Kawaike K., Yasuyuki B. Experiment and simulation of turbulent flow in local scour around a spur dyke. International Journal of Sediment Research. 24 (1), 33, 2009.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-61540d4d-4b00-4125-80b7-6c327915b9f7
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.