PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2013 | 35 | 05 |

Tytuł artykułu

AtSec20 is involved in osmotic stress tolerance and AtSec20 mutation unaffects the integrity of intracellular organelles and the anterograde biosynthetic trafficking

Autorzy

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
The soluble N-ethylmaleimide-sensitive factor attachment protein receptors (SNAREs) play essential roles in intracellular trafficking. However, few experimental data have clarified their roles in the stress responses and the early secretary pathway in Arabidopsis. The AtSec20 gene encodes a protein that is homologous to yeast Sec20p and mammalian BNIP1, which are involved in the Golgi-to-ER retrograde trafficking in yeast and mammalian cells. In this study, AtSec20 is found to be required for the responses to salt stress, osmotic stress and gibberellin (GA) during seed germination and early seedling establishment. Mutation of AtSec20 unaffects the morphology of intracellular organelles, such as endoplasmic reticulum (ER), trans-Golgi network, and peroxisome, and vacuolar protein trafficking is normal in sec20 mutants. Collectively, these results imply that the AtSec20 is involved in abiotic stress tolerance, potentially via roles in retrograde vesicle fusion process in Arabidopsis.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

35

Numer

05

Opis fizyczny

p.1625-1632,fig.,ref.

Twórcy

autor
  • Key Laboratory of Stress Physiology and Ecology in Cold and Arid Regions, Gansu Province, Cold and Arid Regions Environmental and Engineering Research Institute, Chinese Academy of Sciences, Donggang West Road 320, Lanzhou 730000, People’s Republic of China
  • Institute of Cell Biology, Life Sciences School, Lanzhou University, 222# Tianshui Nan Lu, Lanzhou 730000, People’s Republic of China
autor
  • Institute of Cell Biology, Life Sciences School, Lanzhou University, 222# Tianshui Nan Lu, Lanzhou 730000, People’s Republic of China
autor
  • Institute of Cell Biology, Life Sciences School, Lanzhou University, 222# Tianshui Nan Lu, Lanzhou 730000, People’s Republic of China
autor
  • Institute of Cell Biology, Life Sciences School, Lanzhou University, 222# Tianshui Nan Lu, Lanzhou 730000, People’s Republic of China
autor
  • Institute of Cell Biology, Life Sciences School, Lanzhou University, 222# Tianshui Nan Lu, Lanzhou 730000, People’s Republic of China
autor
  • Institute of Cell Biology, Life Sciences School, Lanzhou University, 222# Tianshui Nan Lu, Lanzhou 730000, People’s Republic of China

Bibliografia

  • Andag U, Schmitt HD (2003) Dsl1p, an essential component of the Golgi–endoplasmic reticulum retrieval system in yeast, uses the same sequence motif to interact with different subunits of the COPI vesicle coat. J Biol Chem 278:51722–51734
  • Andag U, Neumann T, Schmitt HD (2001) The coatomer-interacting protein Dsl1p is required for Golgi-to-endoplasmic reticulum retrieval in yeast. J Biol Chem 276:39150–39160
  • Aoki T, Kojima M, Tani K, Tagaya M (2008) Sec22b-dependent assembly of endoplasmic reticulum Q-SNARE proteins. Biochem J 410:93–100
  • Aoki T, Ichimura S, Itoh A, Kuramoto M, Shinkawa T, Isobe T, Tagaya M (2009) Identification of the neuroblastoma-amplified gene (NAG) product as a component of the syntaxin 18 complex implicated in Golgi-to-endoplasmic reticulum retrograde transport. Mol Biol Cell 20:2639–2649
  • Arasaki K, Taniguchi M, Tani K, Tagaya M (2006) RINT-1 regulates the localization and entry of ZW10 to the syntaxin 18 complex. Mol Biol Cell 17:2780–2788
  • Bassham DC, Blatt MR (2008) SNAREs: cogs and coordinators in signaling and development. Plant Physiol 147:1504–1515
  • Bassham DC, Brandizzi F, Otegui M, Sanderfoot AA (2008) The secretory system of Arabidopsis. In: Somerville CR, Meyerowitz EM (eds) the Arabidopsis Book. vol 6. American Society of Plant Biologists, Rockville, MD, pp e0116
  • Bassham DC, Sanderfoot AA, Kovaleva V, Zheng H, Raikhel NV (2000) AtVPS45 complex formation at the trans-Golgi network. Mol Biol Cell 11:2251–2265
  • Batoko H, Zheng HQ, Hawes C, Moore I (2000) A Rab1 GTPase is required for transport between the endoplasmic reticulum and Golgi apparatus and for normal Golgi movement in plants. Plant Cell 12:2201–2217
  • Bubeck J, Scheuring D, Hummel E, Langhans M, Viotti C, Foresti O, Denecke J, Banfield DK, Robinson DG (2008) The syntaxins SYP31 and SYP81 control ER–Golgi trafficking in the plant secretory pathway. Traffic 9:1629–1652
  • Cai H, Reinisch K, Ferro-Novick S (2007) Coats, tethers, Rabs, and SNAREs work together to mediate the intracellular destination of a transport vesicle. Dev Cell 12:671–682
  • Dilcher M, Veith B, Chidambaram S, Hartmann E, Schmitt HD, Fischer von Mollard G (2003) Use1p is a yeast SNARE protein required for retrograde traffic to the ER. EMBO J 22:3664–3674
  • Ebine K, Okatani Y, Uemura T, Goh T, Shoda K, Niihama M, Morita MT, Spitzer C, Otegui MS, Nakano A, Ueda T (2008) A SNARE complex unique to seed plants is required for protein storage vacuole biogenesis and seed development of Arabidopsis thaliana. Plant Cell 20:3006–3021
  • Hamaji K, Nagira M, Yoshida K, Ohnishi M, Oda Y, Uemura T, Goh T, Sato MH, Morita MT, Tasaka M, Hasezawa S, Nakano A, Hara-Nishimura I, Maeshima M, Fukaki H, Mimura T (2009) Dynamic aspects of ion accumulation by vesicle traffic under salt stress in Arabidopsis. Plant Cell Physiol 50:2023–2033
  • Hwang I (2008) Sorting and anterograde trafficking at the Golgi apparatus. Plant Physiol 148:673–683
  • Iinuma T, Aoki T, Arasaki K, Hirose H, Yamamoto A, Samata R, Hauri HP, Arimitsu N, Tagaya M, Tani K (2009) Role of syntaxin 18 in the organization of endoplasmic reticulum subdomains. J Cell Sci 122(Pt 10):1680–1690
  • Jahn RC, Scheller RH (2006) SNAREs-engines for membrane fusion. Nat Rev Mol Cell Biol 7:631–643
  • Kim SJ, Bassham DC (2011) TNO1 is involved in salt tolerance and vacuolar trafficking in Arabidopsis. Plant Physiol 156:514–526
  • Kraynack BA, Chan A, Rosenthal E, Essid M, Umansky B, Waters MG, Schmitt HD (2005) Dsl1p, Tip20p, and the novelDsl3(Sec39) protein are required for the stability of the Q/t–SNARE complex at the endoplasmic reticulum in yeast. Mol Biol Cell 16:3963–3677
  • Lee CF, Pu HY, Wang LC, Sayler RJ, Yeh CH, Wu SJ (2006) Mutation in a homolog of yeast Vps53p accounts for the heat and osmotic hypersensitive phenotypes in Arabidopsis hit1-1 mutant. Planta 224:330–338
  • Leshem Y, Melamed-Book N, Cagnac O, Ronen G, Nishri Y, Solomon M, Cohen G, Levine A (2006) Suppression of Arabidopsis vesicle-SNARE expression inhibited fusion of H2O2-containing vesicles with tonoplast and increased salt tolerance. Proc Natl Acad Sci USA 103:18008–18013
  • Lewis MJ, Pelham HR (1996) SNARE-mediated retrograde traffic from the Golgi complex to the endoplasmic reticulum. Cell 85:205–215
  • Lewis MJ, Rayner JC, Pelham HR (1997) A novel SNARE complex implicated in vesicle fusion with the endoplasmic reticulum. EMBO J 16:3017–3024
  • Leyman B, Geelen D, Quintero FJ, Blatt M (1999) A tobacco syntaxin with a role in hormonal control of guard cell ion channels. Science 283:537–540
  • Li L, Shimada T, Takahashi H, Ueda H, Fukao Y, Kondo M, Nishimura M, Hara-Nishimura I (2006) MAIGO2 is involved in exit of seed storage proteins from the endoplasmic reticulum in Arabidopsis thaliana. Plant Cell 18:3535–3547
  • Nakajima K, Hirose H, Taniguchi M, Kurashina H, Arasaki K, Nagahama M, Tani K, Yamamoto A, Tagaya M (2004) Involvement of BNIP1 in apoptosis and endoplasmic reticulum membrane fusion. EMBO J 23:3216–3226
  • Perry RJ, Mast FD, Rachubinski RA (2009) Endoplasmic reticulumassociated secretory proteins Sec20p, Sec39p, and Dsl1p are involved in peroxisome biogenesis. Eukaryot Cell 8:830–843
  • Reilly BA, Kraynack BA, VanRheenen SM, Waters MG (2001) Golgi-to-endoplasmic reticulum (ER) retrograde traffic in yeast requires Dsl1p, a component of the ER target site that interacts with a COPI coat subunit. Mol Biol Cell 12:3783–3796
  • Ren Y, Yip CK, Tripathi A, Huie D, Jeffrey PD, Walz T, Hughson FM (2009) A structure-based mechanism for vesicle capture by the multisubunit tethering complex Dsl1. Cell 139:1119–1129
  • Sanderfoot AA, Assaad FF, Raikhel NV (2000) The Arabidopsis genome. An abundance of soluble N-ethylmaleimide sensitive factor adaptor protein receptors. Plant Physiol 124:1558–1569
  • Schmitt HD (2010) Dsl1p/Zw10: common mechanisms behind tethering vesicles and microtubules. Trends Cell Biol 20:257–268
  • Surpin M, Raikhel NV (2004) Traffic jams affect plant development and signal transduction. Nat Rev Mol Cell Biol 5:100–109
  • Sweet DJ, Pelham HR (1992) The Saccharomyces cerevisiae SEC20 gene encodes a membrane glycoprotein which is sorted by the HDEL retrieval system. EMBO J 11:423–432
  • Sweet DJ, Pelham HR (1993) The TIP1 gene of Saccharomyces cerevisiae encodes an 80 kDa cytoplasmic protein that interacts with the cytoplasmic domain of Sec20p. EMBO J 12:2831–2840
  • Sztul E, Lupashin V (2006) Role of tethering factors in secretory membrane traffic. Am J Physiol Cell Physiol 290:C11–C26
  • Tamura K, Shimada T, Ono E, Tanaka Y, Nagatani A, Higashi SI, Watanabe M, Nishimura M, Hara-Nishimura I (2003) Why green fluorescent fusion proteins have not been observed in the vacuoles of higher plants. Plant J 35:545–555
  • Tripathi A, Ren Y, Jeffrey PD, Hughson FM (2009) Structural characterization of Tip20p and Dsl1p, subunits of the Dsl1p vesicle tethering complex. Nat Struct Mol Biol 16:114–123
  • Uemura T, Ueda T, Ohniwa RL, Nakano A, Takeyasu K, Sato MH (2004) Systematic analysis of SNARE molecules in Arabidopsis: dissection of the post-Golgi network in plant cells. Cell Struct Funct 29:49–65
  • Uemura T, Sato T, Aoki T, Yamamoto A, Okada T, Hirai R, Harada R, Mori K, Tagaya M, Harada A (2009) p31 deficiency influences endoplasmic reticulum tubular morphology and cell survival. Mol Cell Biol 29:1869–1881
  • Vicient CM, Delseny M (1999) Isolation of total RNA from Arabidopsis thaliana seeds. Anal Biochem 268:412–413
  • Wang LC, Tsai MC, Chang KY, Fan YS, Yeh CH, Wu SJ (2011) Involvement of the Arabidopsis HIT1/AtVPS53 tethering protein homologue in the acclimation of the plasma membrane to heat stress. J Exp Bot 62:3609–3620
  • Yoo SD, Cho YH, Sheen J (2007) Arabidopsis mesophyll protoplasts: a versatile cell system for transient gene expression analysis. Nat Protoc 2:1565–1572
  • Zhao P, Liu F, Ma M, Gong J, Wang Q, Jia P, Zheng GC, Liu H (2011) Overexpression of AtLEA3-3 confers resistance to cold stress to Escherichia coli and provides enhanced osmotic stress tolerance and ABA sensitivity in Arabidopsis thaliana. Mol Biol (Mosk) 45:851–862
  • Zhao P, Liu F, Zhang B, Liu X, Wang B, Gong J, Yu G, Ma M, Lu Y, Sun J, Wang Z, Jia P, Liu H (2012) MAIGO2 is involved in abscisic acid-mediated response to abiotic stresses and Golgi-to-ER retrograde transport. Physiol Plant. doi:10.1111/j.1399-3054.2012.01704.x
  • Zhou ZY, Zhang CG, Wu L, Zhang CG, Chai J, Wang M, Jha A, Jia PF, Cui SJ, Yang M, Chen R, Guo GQ (2011) Functional characterization of the CKRC1/TAA1 gene and dissection of hormonal actions in the Arabidopsis root. Plant J 66:516–527
  • Zhu JH, Gong ZZ, Zhang CQ, Song CP, Damsz B, Inan G, Koiwa H, Zhu JK, Hasegawa PM, Bressan RA (2002) OSM1/SYP61: a syntaxin protein in Arabidopsis controls abscisic acid-mediated and non-abscisic acid-mediated responses to abiotic stress. Plant Cell 14:3009–3028

Uwagi

rekord w opracowaniu

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-6134649c-0f1c-49c9-a9d5-cce0ee2fde66
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.