PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2013 | 12 | 2 |

Tytuł artykułu

Genetic diversity among cultivated and wild chamomile germplasm based on ISSR analysis

Treść / Zawartość

Warianty tytułu

PL
Zróżnicowanie genetyczne dzikich i uprawnych form rumianku przy wykorzystaniu markerów ISSR

Języki publikacji

EN

Abstrakty

EN
Chamomilla recutita (L.) Rausch. is a wide known herbal plant which has many medical attributes and find applications in pharmacy, nutritional and sanitary industries. Estimating genetic diversity in population is very important to protect variety of chamomile species. The objective of this study was characterization of chamomile germplasm using ISSR markers. Among 20 screened ISSR primers, only 5 produced polymorphic and repeatable fragments. In total primers produced 48 fragments out of which 41 (85.4%) were polymorphic. The average PIC value for the amplification products was 0.340. Based on ISSR markers the genetic similarity matrices were produced. The mean genetic similarity was calculated at 0.653. Present study demonstrated that ISSR markers provided a practical and effective method to evaluate the genetic similarity and relationships of chamomile genotypes. Analyzed chamomile genotypes were characterized by quite high genetic similarity; it suggested that there is necessity to find new sources of genetic diversity in chamomile in wild populations.
PL
Celem przeprowadzonych badań była charakterystyka genotypów rumianku wykorzystując markery ISSR. Spośród 20 testowanych starterów ISSR jedynie 5 inicjowało amplifikację polimorficznych i powtarzalnych produktów. Łącznie uzyskano 48 fragmentów, z których 41 (85,4%) było polimorficznych. średnia wartość PIC dla uzyskanych produktów amplifikacji wynosiła 0,340. Wykorzystując markery ISSR, utworzono matryce podobieństwa genetycznego. średnia wartość podobieństwa analizowanych genotypów wynosiła 0,653. Przeprowadzone badania potwierdzają przydatność metody ISSR do oceny podobieństwa genetycznego rumianku. Analizowane genotypy charakteryzowały się wysokim podobieństwem genetycznym, co wskazuje na konieczność poszukiwania nowych źródeł polimorfizmu wśród dzikich gatunków, w celu poszerzenia zmienności genetycznej uprawnych form rumianku.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

12

Numer

2

Opis fizyczny

p.43-50,fig.,ref.

Twórcy

autor
  • Institute of Plant Genetics, Breeding and Biotechnology, University of Life Sciences in Lublin, 15 Akademicka St., 20-950 Lublin, Poland
  • Institute of Plant Genetics, Breeding and Biotechnology, University of Life Sciences in Lublin, 15 Akademicka St., 20-950 Lublin, Poland
  • Institute of Plant Genetics, Breeding and Biotechnology, University of Life Sciences in Lublin, 15 Akademicka St., 20-950 Lublin, Poland

Bibliografia

  • Anderson J.A., Churchill G.A., Autrique J.E., Sorells M.E., Tanksley S.D., 1993. Optimizing parental selection for genetic-linkage maps. Genome 36,181–186.
  • Anthony F., Bertrand B., Quiros O., Wilches A., Lashermes P., Berthaud J., Charrier A., 2004. Genetic diversity of wild coffee (Coffea arabica L.) using molecular markers. Euphytica 118, 53–65.
  • Chen L., Gao Q., Chen D., Xu C., 2005. The use of RAPD markers for detecting genetic diversity, relationship and molecular identification of Chinese elite tea genetic resources (Camellia sinensis (L.) O. Kuntze) preserved in a tea germplasm repository. Biodivers. Conserv. 14, 1433–1444.
  • Doyle J.J., Doyle J.L., 1987. A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochem. Bull. 19, 11–1.
  • Franke R., Schilcher H., 2007. Relevance and use of chamomile (Matricaria recutita L.). Acta Hort. 749, 29–43.
  • Gajera B.B., Kumar N., Singh A.S., Punvar B.S., Ravikiran R., Subhash N., Jadejam G.C., 2010. Assessment of genetic diversity in castor (Ricinus communis L.) using RAPD and ISSR markers. Ind. Crop. Prod. 32 (3), 491–498.
  • González A., Coulson A., Brettell R., 2002. Development of DNA markers (ISSRs) in mango. Acta Hortic. 575, 139–143.
  • Hagidimitriou M., Katsiotis A., Menexes G., Pontikis C., Loukas M., 2005. Genetic diversity of major Greek olive cultivars using molecular (AFLPs and RAPDs) markers and morphological traits. J. Amer. Soc. Hort. Sci. 130, 211–217.
  • He J.S., Chen L., Si Y., Huang B., Ban X.Q., Wang Y.W., 2009. Population structure and genetic diversity distribution in wild and cultivated populations of the traditional Chinese medicinal plant Magnolia officinalis subsp. Biloba (Magnoliaceae). Genetica 135, 233–243.
  • Letchamo W., Marquard R., 1993. The pattern of active substances accumulation in chamomile genotypes under different growing conditions and harvesting frequencies. Acta Hort. 331, 357–364.
  • Li S., Li J., Yang X-L., Cheng Z., Zhang W-J., 2010. Genetic diversity and differentiation of cultivated ginseng (Panax ginseng C. A. Meyer) populations in North-east China revealed by inter-simple sequence repeat (ISSR) markers. Genet. Res. Crop. Evol. 58 (6), 815–824.
  • Manifesto M.M., Schlotter A.R., Hoop H.E., Suarez E.Y., Dobcovsky J., 2001. Quantitive evaluation of genetic diversity in wheat germplasm using molecular markers. Crop Sci. 41, 682–690.
  • Nagoaka T., Ogihara Y., 1997. Applicability of inter-simple sequence repeat polymorphism in wheat for use as DAN markers in comparison to RFLP and RAPD markers. Theor. Appl. Genet. 93, 133–139.
  • Nei M., Li W.H., 1979. Mathematical model for studying genetic variation in terms of restriction endonucleases. Proc. Natl. Acad. Sci. 76, 5269–5273.
  • Nybom H., 2004. Comparison of different nuclear DNA markers for estimating intraspecyfic genetic diversity in plants. Mol. Ecol. 5,1143–1150.
  • Okoń S., Surmacz-Magdziak A., 2011. The use of RAPD markers for detecting genetic similarity and molecular identification of chamomile (Chamomilla recutita L. Rausch.) genotypes. Herba. Pol. 57 (1), 38–47.
  • Pourohit S.S., Vyas S.P., 2004. Medicinal plant cultivation. Agrobios, India.
  • Rahimmalek M., Bahreininejad B., Khorrami M., Sayed Tabatabaei B.E., 2009. Genetic variability and geographic differentiation in thymus daenensis subsp. daenensis, an endangered medicinal plant, as revealed by inter simple sequence repeat (ISSR) markers. Biochem. Gen. 47 (11–12), 831–842.
  • Rohlf F.J., 2001. NTSYS-pc numerical taxonomy and multivariate analysis system. Version 5.1. Exeter Publishing Ltd., Setauket, N.Y.
  • Solouki M., Mehdikhani H., Zeinali H., Emamjomeh A.A., 2008. Study of genetic diversity in chamomile (Matricaria chamomilla) based on morphological traits and molecular markers. Sci. Hortic. 117, 281–287.
  • SunY., Wen X., Huang H., 2010. Population genetic differentiation of Schisandra chinesis and Schisandra sphenanthera as revealed by ISSR analysis. Bioch. Sys. Ekol. 38, 257–263.
  • Wagner C., Friedt W., Marquard R.A., Ordon F., 2005. Molecular analyses on the genetic diversity and inheritance of (–)-a-bisabolol and chamazulene content in tetraploid chamomile (Chamomilla recutita (L.) Rausch.). Plant Sci. 169, 917–927.
  • Zhang L.J., Dai S.L., 2010. Genetic variation within and among populations of Orychophragmus violaceus (Cruciferae) in China as detected by ISSR analysis. Genet. Res. Crop. Evol. 57 (1), 55–64.
  • Zhao Y., Chen X.Y., Wang X.R., Pian R.Q., 2007. ISSR analysis of genetic diversity among Lespedeza bicolor populations. J. Plant Genet. Res. 2, 195–199.
  • Zietkiewicz E., Rafalski A., Labuda D., 1994. Genome fingerprinting by simple-sequence repeat (SSR)-anchored polymerase chain reaction amplification. Genomics 20, 176–183.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-60da8e09-401b-4599-a32b-d9ebbbcbeecc
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.