PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2019 | 28 | 5 |

Tytuł artykułu

Electrochemical properties and pollution remediation mechanism of P-MFC anode under cadmium stress

Autorzy

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
To explore the remediation feasibility of heavy metal pollution in wetland soil using a plant-microbial fuel cell (P-MFC) and the corresponding mechanism, a P-MFC system was constructed with in situ simulations of real wetland environment. By using Typhalatifolia L. as the trial plant, the electrochemical properties of the anode under different cadmium (Cd) concentrations are analyzed by cyclic voltammetry and electrochemical impedance, and the microbial community structure is determined by high-throughput sequencing. The maximum P-MFC output voltage of 546.65 mV and Cd accumulation of 36.461 mg/kg at the Typhalatifolia L. roots are revealed. Cd stress could not only decrease the output voltage and anodic electrochemical activity of the P-MFC system but also affect the accumulation ability of Typhalatifolia L. and the internal resistance and microbial community structure of P-MFC. We find it feasible to apply P-MFC to large-scale heavy metal remediation in wetland soil, but it is critical to consider the tolerance range of pollution stress to achieve the best balance between energy output and environmental restoration.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

28

Numer

5

Opis fizyczny

p.3985-3992,fig.,ref.

Twórcy

autor
  • College of Environment and Safety Engineering, Chang Zhou University, Changzhou, China
autor
  • College of Environment and Safety Engineering, Chang Zhou University, Changzhou, China

Bibliografia

  • 1. NITISORAVUT R., REGMI R. Plant microbial fuel cells: A promising biosystems engineering. Renew SustEnerg Rev. 76, 81, 2017.
  • 2. TANG X.T., Du Z.W., Li H.R. Anodic electron shuttle mechanism based on 1-hydroxy-4-aminoan thraquinone in microbial fuel cells. ElectrochemCommun. 12, 1140, 2010.
  • 3. XU M.Y., WU W.M., WU L.Y., HE Z.L., NOSTRAND J.D.V., DENG Y., LUO J., CARLEY J., GINDER-VOGEL M., GENTRY T.J., GU B., WATSON D., JARDINE P.M., MARSH T.L., TIEDJE J.M.,HAZEN T., CRIDDLE C.S., ZHOU J.Z. Responses of microbial community functional structures to pilot-scale uranium in situ bioremediation. ISME J. 4, 1060, 2010.
  • 4. YAN Z.S., SONG N., CAI H.Y., TAY J.H., JIANG H. Enhanced degradation of phenanthrene and pyrene in freshwater sediments by combined employment of sediment microbial fuel cell and amorphous ferric hydroxide. J Hazard Mater. 199-200, 217, 2012.
  • 5. WETSER K., SUDIRJO E., BUISMAN C.J.N., STRIK D.P.B.T.B. Electricity generation by a plant microbial fuel cell with an integrated oxygen reducing biocathode. ApplEnerg. 137, 151, 2015.
  • 6. WETSER K., LIU J., BUISMAN C., STRIK D. Plant microbial fuel cell applied in wetlands: Spatial, temporal and potential electricity generation of Spartinaanglica, salt marshes and Phragmitesaustralis, peat soils. Biomass Bioenerg. 83, 543, 2015.
  • 7. MOQSUD M.A., YOSHITAKE J., BUSHRA Q.S., HYODO M., OMINE K., STRIK D. Compost in plant microbial fuel cell for bioelectricity generation. Waste Manage. 36, 63, 2015.
  • 8. LU L., XING D., REN Z.J. Microbial community structure accompanied with electricity production in a constructed wetland plant microbial fuel cell. Bioresource Technol. 195, 115, 2015.
  • 9. MATHURIYA A.S., BAJPAI S.S., GIRI S. Epipremnumaureum (money plant) as cathode candidate in microbial fuel cell treating domestic wastewater. J Biochem Tech. 6, 1025, 2015.
  • 10. YADAV A.K., DASH P., MOHANTY A., ABBASSI R., MISHRA B.K. Performance assessment of innovative constructed wetland-microbial fuel cell for electricity production and dye removal. Ecol Eng. 47, 126, 2012.
  • 11. AELTERMAN P., FREGUIA S., KELLER J., VERSTRAETE W., RABAEY K. The anode potential regulates bacterial activity in microbial fuel cells. Appl Microbiol Biot. 78, 409, 2008.
  • 12. HE J., ZHANG S., TENG J.Q., XIA S.B. Progress on application of aquatic plants in microbial fuel cells. Environ Sci Technol. 2013, 100, 2013.
  • 13. RONALD P.C., SHIRASU K. Front-runners in plant-microbe interactions. Curr Op in Plant Biol. 15, 345, 2012.
  • 14. TENG Y., WANG X., LI L., LI Z., LUO Y. Rhizobia and their bio-partners as novel drivers for functional remediation in contaminated soils. Front Plant Sci. 6, 32, 2015.
  • 15. WANG R.C., ZHOU X.Y., YAO J.B., LI X.L. Influence of nitrate concentration in anolyte on electricity generation of microbial fuel cell. Acta Sci Vet. 36, 1608, 2016.
  • 16. DE S.L., VAN den B.L., DANG H.S., HÖFTE M., BOON N., RABAEY K., VERSTRAETE W. Microbial fuel cells generating electricity from rhizodeposits of rice plants. Environ Sci Technol. 42, 3053, 2008.
  • 17. LIU S.T., SONG H.L., LI X.N., YANG F. Power Generation Enhancement by Utilizing Plant Photosynthate in Microbial Fuel Cell Coupled Constructed Wetland System. Int J Photoenergy. 2013, 15158, 2013.
  • 18. HELDER M., STRIK D.P., HAMELERS H.V., KUIJKEN R.C., BUISMAN C.J. New plant-growth medium for increased power output of the Plant-Microbial Fuel Cell. Bioresour Technol. 104, 417, 2012.
  • 19. HELDER M., STRIK D.P., TIMMERS R.A. Resilience of roof-top Plant-Microbial Fuel Cells during Dutch winter. Biomass Bioenerg. 51, 1, 2013.
  • 20. TIMMERS R.A., ROTHBALLER M., STRIK D.P., ENGEL M., SCHULZ S., SCHLOTER M., HARTMANN A., HAMELERS B., BUISMAN C. Microbial community structure elucidates performance of Glyceria maxima plant microbial fuel cell. ApplMicrobiolBiot. 94, 537, 2012.
  • 21. KARTHIKEYAN R., WANG B., XUAN J., WONG J.W.C., LEE P.K.H., LEUNG M.K.H. Interfacial electron transfer and bioelectrocatalysis of carbonized plant material as effective anode of microbial fuel cell. Electrochim Acta. 157, 314, 2015.
  • 22. SCHICKLER H., CASPI H. Response of antioxidative enzymes to nickel and cadmium stress in hyperaccumulator plants of the genus Alyssum. Physiol Plantarum 105, 39, 2010.
  • 23. LIN Y.F., AARTS M.G. The molecular mechanism of zinc and cadmium stress response in plants. Cell Mol Life Sci. 69, 3187, 2012.
  • 24. SARRET G., SAUMITOU-LAPRADE P., BERT V., PROUX O., HAZEMANN J.L., TRAVERSE A., MARCUS M.A., MANCEAU A. Forms of zinc accumulated in the hyperaccumulator Arabidopsis halleri. Plant Physiol. 130, 1815, 2002.
  • 25. LASAT M.M., PENCE N.S., GARVIN D.F., EBBS S.D., KOCHIAN L.V. Molecular physiology of zinc transport in the Zn hyperaccumulator Thlaspicaerulescens. J Exp Bot. 51, 71, 2000.
  • 26. LYUBENOVA L., SCHRÖDER P. Plants for waste water treatment-Effects of heavy metals on the detoxification system of Typhalatifolia. Bioresource Technol. 102, 996, 2011.
  • 27. MORARI F., FERRO N.D., COCCO E. Municipal Wastewater Treatment with Phragmitesaustralis, L. and Typhalatifolia, L. for Irrigation Reuse. Boron and Heavy Metals. Water Air Soil Poll. 226, 1, 2015.
  • 28. CHEN Y.L., HONG X.Q., HE H., LUO H.W., QIAN T.T., LI R.Z., JIANG H., YU H.Q. Biosorption of Cr (VI) by Typhaangustifolia: mechanism and responses to heavy metal stress. Bioresource Technol. 160, 89, 2014.
  • 29. PILONSMITS E. Increased accumulation of cadmium and lead under Ca and Fe deficiency in Typhalatifolia: A study of two pore channel (TPC1) gene responses. Environ Exp Bot. 115, 38, 2015.
  • 30. NIESSEN J., SCHRÖDER U., ROSENBAUM M., SCHOLZ F. Fluorinated polyanilines as superior materials for electrocatalytic anodes in bacterial fuel cells. Electrochem Commun. 6, 571, 2004.
  • 31. BABAUTA J., RENSLOW R., LEWANDOWSKI Z., BEYENAL H. Electrochemically active biofilms: facts and fiction. A review. Biofouling. 28, 789, 2012.
  • 32. YOON S.M., CHOI C.H., KIM M., HYUN M.S., SHIN S.H., YI D.H., KIM H.J. Enrichment of electrochemically active bacteria using a three-electrode electrochemical cell. J MicrobiolBiotechnol. 17, 110, 2007.
  • 33. ZHAO S.L., LI Y.C., YIN H.J., LIU Z.Z., LUAN E.X., ZHAO F., TANG Z.Y., LIU S.Q. Three-dimensional graphene/Pt nanoparticle composites as freestanding anode for enhancing performance of microbial fuel cells. Sci Adv. 1, e1500372, 2015.
  • 34. LOWY D.A., TENDER L.M., ZEIKUS J.G., PARK D.H., LOVLEY D.R. Harvesting energy from the marine sediment-water interface II: Kinetic activity of anode materials. BiosensBioelectron. 21, 2058, 2006.
  • 35. SONG T.S., JIN Y., BAO J., KANG D., XIE J. Graphene/biofilm composites for enhancement of hexavalent chromium reduction and electricity production in a biocathode microbial fuel cell. J Hazard Mater. 317, 73, 2016.
  • 36. CHAUDHURI S.K., LOVLEY D.R. Electricity generation by direct oxidation of glucose in mediator less microbial fuel cells. Nat Biotechnol. 21, 1229, 2003.
  • 37. BOND D.R., LOVLEY D.R. Evidence for involvement of an electron shuttle in electricity generation by Geothrixfermentans. Appl Environ Microb. 71, 2186, 2005.
  • 38. NIESSEN J., SCHRÖDER U., SCHOLZ F. Exploiting complex carbohydrates for microbial electricity generation – a bacterial fuel cell operating on starch. Electrochem Commun. 6, 955, 2004.
  • 39. ZHANG YF, MIN BK, HUANG LP, ANGELIDAKI I. Generation of Electricity and Analysis of Microbial Communities in Wheat Straw Biomass-Powered Microbial Fuel Cells. Appl Environ Microbiol. 75, 3389, 2009.
  • 40. BOND D.R., HOLMES D.E., TENDER L.M., LOVLEY D.R. Electrode-reducing microorganisms that harvest energy from marine sediments. Science. 295, 483, 2002.
  • 41. LI Y.H., LIU Q.F., LIU Y., ZHU J.N., ZHANG Q. Endophytic bacterial diversity in roots of Typhaangustifolia L. in the constructed Beijing Cuihu Wetland (China). Res Microbiol. 162, 124, 2011.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-60cfda55-ebde-44bf-bf4b-8dd4c78f711a
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.