Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2018 | 27 | 3 |

Tytuł artykułu

Role of graph theory to facilitate landscape connectivity: subdivision of a Harary Graph

Warianty tytułu

Języki publikacji



This work focuses on mapping landscape connectivity by making use of a subdivision of a Harary graph through super edge antimagic total labeling. This study employs a Harary graph by inserting h vertices in each edge, where h = 2n, n ≥ 1 using the super (a, 2) edge antimagic total labeling and labeling the vertices and edges by taking the difference of arithmetic progression as 2 i.e. d = 2. We divided this paper into two parts. In first part, when the order of the subdivided harary graphs p varies then the distance t will remain the same, while in the other part, when the order p varies then distance t will also vary.

Słowa kluczowe








Opis fizyczny



  • Department of Mathematics and Statistics, University of Lahore, Lahore, Pakistan
  • Department of Mathematics and Statistics, University of Lahore, Lahore, Pakistan
  • Department of Mathematics and Statistics, University of Lahore, Lahore, Pakistan
  • Department of Mathematics and Statistics, University of Lahore, Lahore, Pakistan
  • Department of Mathematics and Statistics, University of Lahore, Lahore, Pakistan
  • Department of Chemistry, University of Lahore, Lahore, Pakistan
  • Department of Chemistry, University of Lahore, Lahore, Pakistan


  • 1. CETIN M. Using GIS analysis to assess urban green space in terms of accessibility: case study in Kutahya. Int. J. Sust. Dev. World Ecol. 22 (5), 420, 2015.
  • 2. CETIN M. Sustainability of Urban Coastal Area Management: A Case Study on Cide, J. Sustain. For. 35 (7), 527, 2016.
  • 3. CETIN M. Consideration of permeable pavement in landscape architecture. J. Environ. Prot. Ecol. 16 (1), 385, 2015.
  • 4. CETIN M. Determination of bioclimatic comfort areas in landscape planning: A case study of Cide Coastline. Turk. J. Agric. Food Sci. Tech. 4 (9), 800, 2016.
  • 5. CETIN M. Evaluation of the sustainable tourism potential of a protected area for landscape planning: a case study of the ancient city of Pompeipolis in Kastamonu. Int. J. Sust. Dev. World Ecol. 22 (6), 490, 2015.
  • 6. CETIN M. Determining the bioclimatic comfort in Kastamonu City. Environ. Monit. Assess. 187 (10), 640, 2015.
  • 7. CETIN M., ADIGUZEL F., KAYA O., SAHAP A. Mapping of bioclimatic comfort for potential planning using GIS in Aydin. Environ. Dev. Sustain. 1-15, 2016 doi: 10. 1007/s10668-016-9885-5
  • 8. CETIN M., SEVIK H. Evaluating the recreation potential of Ilgaz Mountain National Park in Turkey. Environ. Monit. Assess. 188 (1), 52, 2016.
  • 9. UKPAKA C. Development of model for bioremediation of crude oil using moringa extract. Chem. Int. 2, 19, 2016b.
  • 10. UKPAKA C. Empirical model approach for the evaluation of pH and conductivity on pollutant diffusion in soil environment. Chem. Int. 2, 267, 2016c.
  • 11. UKPAKA C. Predictive model on the effect of restrictor on transfer function parameters on pneumatic control system. Chem. Int. 2, 128, 2016d.
  • 12. UKPAKA C., ADAOBI SNA. Development and evaluation of trans-amadi groundwater parameters: The integration of finite element techniques. Chem. Int. 3, 306, 2017.
  • 13. ALI T.A., MORTULA M., ATABAY S. GIS-based Study on the Susceptibility of Dubai Creek (UAE) to Eutrophication. Pol. J. Environ. Stud. 25 (6), 2275, 2016.
  • 14. PETROSIAN H., KAR A.D., ASHRAFI S., FEGHHI J. Investigating Environmental Factors for Locating Mangrove Ex-situ Conservation Zones Using GIS Spatial Techniques and the Logistic Regression Algorithm in Mangrove Forests in Iran. Pol. J. Environ. Stud. 25 (5), 2097, 2016.
  • 15. HOU K., LI X., WANG J., ZHANG J. Evaluating Ecological Vulnerability Using the GIS and Analytic Hierarchy Process (AHP) Method in Yan’an, China. Pol. J. Environ. Stud. 25 (2), 599, 2016.
  • 16. ILIĆ I., VUKOVIĆ M., ŠTRBAC N., UROŠEVIĆ S. Applying GIS to Control Transportation Air Pollutants. Pol. J. Environ. Stud. 23 (5), 1849, 2014.
  • 17. RAHMONOV O., GAJOS M., CZUBAN R., PARUSEL T. GIS Methods in Monitoring Succession Processes in Limestone and Dolomite Quarries. Pol. J. Environ. Stud. 23 (2), 647, 2014.
  • 18. MINOR E.S., URBAN D. Graph theory as a proxy for spatially explicit population models in conservation planning. Ecological Applications. 17, 1771, 2007.
  • 19. GALPERN P., MANSEAU M., FALL A. Patch-based graphs of landscape connectivity: A guide to construction, analysis and application for conservation. Biological Conversions 144, 44, 2011.
  • 20. GASTNER M.T., NEWMAN M.E.J. The spatial structure of networks. European Physical Journal B. 49, 247, 2006.
  • 21. ZETTERBERG A., MÖRTBERG U.M., BALFORS B. Making graph theory operational for landscape ecological assessments, planning, and design. Landscape and Urban Planning, 95, 181, 2010.
  • 22. FIGUEROA-CENTENO R.M., ICHISHIMA R., MUNTANER-BATLE F.A. The place of super edge-magic labelings among other classes of labelings. Discrete Math. 231, 153, 2001.
  • 23. FANHUA KONG F., YIN H., NAKAGOSHI N., ZONG Y. Urban green space network development for biodiversity conservation: Identification based on graph theory and gravity modeling. Landscape and Urban Planning, 95, 16, 2010.
  • 24. LORO M., ORTEGA E., ARCE R.M., GENELETTI D. Ecological connectivity analysis to reduce the barrier effect of roads. An innovative graph-theory approach to define wildlife corridors with multiple paths and without bottlenecks. Landscape and Urban Planning, 139, 149, 2015.
  • 25. PHILLIPS J.D., SCHWANGHART W., HECKMANN T. Graph theory in the geosciences. Earth-Science Reviews, 143, 147, 2015.
  • 26. NGURAH A.A.G., SIMANJUNTAK R., BASKORO E.T. Super (a , d) -EMT labeling of subdivision of K{1,3}. SUT J. Math.}. 43, 127, 2007.
  • 27. KIM H.K., KOOLEN J.H., YANG J.Y. Structure theory for graphs with fixed smallest eigenvalue. Linear Algebra and its Applications, 504, 1, 2016.
  • 28. KEOWN C.L., DATKO M.C., CHEN C.P., MAXIMO J.O., JAHEDI A., MÜLLER R-A. Network Organization Is Globally Atypical in Autism: A Graph Theory Study of Intrinsic Functional Connectivity. Biological Psychiatry: Cognitive Neuroscience and Neuroimaging, 2, 66, 2017.
  • 29. SIMANJUNTAK R., MILLER M. Survey of (a,d) -EAT graph labelings. MIHMI. 6, 179, 2000.
  • 30. SIMANJUNTAK R., BERTAULT F., MILLER M. Two new (a,d) -EAT graph labelings. Proc. of Eleventh Austrailian Workshop of Combinatorial Algorithm. 179, 2000.
  • 31. FOLTÊTE J.-C., GIRAUDOUX P. A graph-based approach to investigating the influence of the landscape on population spread processes Ecological Indicators, 18, 684, 2012.
  • 32. HUSSAIN M., BASKORO E.T., ALI K. Super (a,d) antimagic total labeling of Harary graph. Ars Combinatoria. 104, 225, 2012.
  • 33. JAVAID M., MAHBOOB S., MAHBOOB A., HUSSAIN M. On (Super) edge-antimagic total labeling of subdivided stars. International Journal of Mathematics and Soft Computing. 4, 73, 2014.
  • 34. SALMAN A.N.M., NGURAH A.A.G., IZZATI N. On super edge-magic total labeling of a subdivision of a star Sn. Utiltas Mathematica. 81, 275, 2010.
  • 35. BHATTI A.A., JAVAID M. Super EAT labeling of subdivided stars. J. Indones.Math.Sec. 19, 67, 2013.
  • 36. JAVAID M, BHATTI AA, HUSSAIN M. (a,d) – EAT labeling of extended -trees. Utiltas Mathematica. 87, 293, 2012.
  • 37. JAVAID M., HUSSAIN M., ALI K, DAR K.H. Super edg-emagic total labeling on -trees. Utiltas Mathematica. 86, 183, 2011.
  • 38. LEE S.M., SHAN Q.X. All trees with at most 17 vertices are super edgemagic. 16th MCCCC Confernece, Carbondale, University Southern Illinois. 2002.
  • 39. RABINOWITZ A., ZELLER K.A. A range-wide model of landscape connectivity and conservation for the jaguar, Panthera onca. Biological Conservation, 143, 939, 2010.
  • 40. LIU S., DONG Y., DENG L., LIU Q., ZHAO H., DONG S. Forest fragmentation and landscape connectivity change associated with road network extension and city expansion: A case study in the Lancang River Valley. Ecological Indicators, 36, 160, 2014.
  • 41. THOMAS C.J., LAMBRECHTS J., WOLANSKI E., TRAAG V.A., BLONDEL V.D., DELEERSNIJDER E., HANERT E. Numerical modelling and graph theory tools to study ecological connectivity in the Great Barrier Reef. Ecological Modelling, 272, 160, 2014.
  • 42. FORTIN M.-J., JAMES P.M.A., MACKENZIE A., MELLES S.J., RAYFIELD B. Spatial statistics, spatial regression, and graph theory in ecology. Spatial Statistics, 1, 100, 2012.
  • 43. QI K., FAN Z., NG C.N., WANG X., XIE Y. Functional analysis of landscape connectivity at the landscape, component, and patch levels: A case study of Minqing County, Fuzhou City, China. Applied Geography, 80, 64, 2017.
  • 44. CHEN T., SUN Z., WU B. Stability of multi-group models with cross-dispersal based on graph theory. Applied Mathematical Modelling, 47, 745, 2017.
  • 45. MAYVAN B.B., RASOOLZADEGAN A. Design pattern detection based on the graph theory. Knowledge-Based Systems, 120, 211, 2017.
  • 46. URBAN D.L., MINOR E.S., TREML E.A., SCHICK R.S. Graph models of habitat mosaics. Ecol. Lett. 12, 260, 2009.
  • 47. LUQUE S., SAURA S., FORTIN M.-J. Landscape connectivity analysis for conservation: insights from combining new methods with ecological and genetic data. Landscape Ecol. 27, 153, 2012.
  • 48. RUDNICK D.A., RYAN S.J., BEIER P., CUSHMAN S.A., DIEFFENBACH F., EPPS C.W., GERBER L.R., HARTTER J., JENNESS J.S., KINTSCH J., MERENLENDER A.M., PERKL R.M., PREZIOSI D.V., TROMBULAK S.C. The Role of Landscape Connectivity in Planning and Implementing Conservation and Restoration Priorities. Issues in Ecol. 16, 1, 2012

Typ dokumentu



Identyfikator YADDA

JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.