PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2014 | 36 | 07 |

Tytuł artykułu

Protein metabolism during natural ageing in desiccating recalcitrant seeds of Shorea robusta

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Seeds of Shorea robusta (sal) are recalcitrant owing to its high desiccation sensitivity. Germinability in sal seed was lost rapidly from 100 to 0 % within 8 days. Protein oxidation examined separately in axis and cotyledon of ageing sal seeds by monitoring the levels of carbonyls, hydroperoxide, malondialdehyde and 4-hydroxy-2-nonenal adducts with protein, Amadori and Maillard reaction products. Changes in protease and proteasome activity were also estimated. The levels of all the modified proteins and activities of protease and proteasome were similar in axis and cotyledons. The amounts of carbonyls (5.5 fold in axis and 3.9 fold in cotyledons) and hydroperoxides (13.5 fold in axis and 12 fold in cotyledons) increased significantly as the seeds became non-viable. Similarly, the levels of malondialdehyde and 4-hydroxy-2-nonenal adducts promoted as the storage period advanced and reached tenfold both in the axis and cotyledons in non-viable seeds. The ageing also promoted levels of reducing sugar along with rapid enhancement in the levels of Amadori and Maillard reaction products, respectively, by 4.4 and 1.8 fold in 5 days sal seeds. Substantial promotion in protease activity both in the axis (sevenfold) and cotyledons (tenfold) of absolutely aged seeds was discernible. The activity of proteasome exhibited steady decline from 0.767 to 0.170 nmol min⁻¹ g⁻¹ DM in axis and 0.20–0.086 nmol min⁻¹ g⁻¹ DM in cotyledons of ageing sal seeds. Changes in the ROS and protein catabolism/oxidation have been discussed to establish loss of germinability in desiccating recalcitrant sal seeds.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

36

Numer

07

Opis fizyczny

p.1649-1659,fig.,ref.

Twórcy

autor
  • School of Life Sciences, Pt. Ravishankar Shukla University, 492 010 Raipur, India
  • School of Life Sciences, Pt. Ravishankar Shukla University, 492 010 Raipur, India
  • School of Studies in Biotechnology, Pt. Ravishankar Shukla University, 492 010 Raipur, India

Bibliografia

  • Berjak P, Pammenter NW (1997) Progress in understanding and manipulation of desiccation sensitive (recalcitrant) seeds. In: Ellis RH, Black M, Murdoch AJ, Hong TD (eds) Basic and applied aspects of seed biology. Proc Fifth Int Workshop on Seeds. Reading, Kluwer Academic Publishers, The Netherlands, pp 689–703
  • Berjak P, Pammenter NW (2008) From Avicennia to Ziziana: seed recalcitrance in perspective. Ann Bot 101:213–228
  • Bradford MM (1976) A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254
  • Bruni F, Leopold AC (1991) Glass transitions in soybean seed: relevance to anhydrous biology. Plant Physiol 96:660–663
  • Carrard G, Friguet B (2003) The proteasome in aging. In: von Zglinicki T (ed) Aging at the molecular level. Kluwer Academic Publisher, The Netherlands, pp 213–231
  • Castellion M, Matiacevich S, Buera P, Maldonado S (2010) Protein deterioration and longevity of quinoa seeds during long term storage. Food Chem 121:952–958
  • Chairpotto E, Scavazza A, Leonarduzzi G, Camandola S, Biasi F, Teggia PM, Garavogilia M, Robecchi A, Roncari A, Poli G (1997) Oxidative damage and transforming growth factor β 1 expression in pretumorial and tumoral lesions of human intestine. Free Radic Bio Med 22:889–894
  • Firth CA, Crone EM, Flavall EA, Roake JA, Gieseg SP (2008) Macrophage mediated protein hydroperoxide formation and lipid oxidation in low density lipoprotein are inhibited by the inflammation marker 7,8-dihydroneopterin. Biochimia et Biophysica Acta 1783:1095–1101
  • Galleschi L, Capocchi A, Ghiringhelli S, Saviozzi F, Calucci L, Pinzino C, Zandomeneghi M (2002) Antioxidants, free radicals, storage proteins and proteolytic activities in wheat (Triticum durum) seeds during accelerated aging. J Agric Food Chem 50:5450–5457
  • Gay C, Collins J, Gebicki JM (1999) Hydroperoxide assay with the ferric-xylenol orange complex. Anal Biochem 273:149–155
  • Gebicki S, Gebicki JM (1993) Formation of peroxides in amino acids and proteins exposed to oxygen free radicals. Biochem J 289:743–749
  • Gebicki S, Gebicki JM (1999) Crosslinking of DNA and proteins induced by protein hydroperoxide. J Biochem 338:629–636
  • Hammond CJ (2008) Is oxidative stress the cause of death when recalcitrant Spartina alterniflora seeds are dried? Ph. D. Thesis, Louisiana State University and Agriculture and Mechanical College, Louisiana, pp 1–150
  • Hendry GAF, Finch-Savage WE, Thorpe PC, Antherton NM, Buckland SM, Nilsson KA, Seel WE (1992) Free radical activity and loss of viability during desiccation in the recalcitrant Quercus robur L. New Phytol 122:273–279
  • Job C, Rajjou L, Lovigny Y, Belghazi M, Job D (2005) Pattern of protein oxidation in Arabidopsis seeds and during germination. Plant Physiol 138:790–802
  • Kehinde TO, Ajala MO, Daniel IO, Oyelakin OO (2013) Physiological and genetic integrity of Amaranth (Amaranthus spp.) seeds during storage. Int J Plant Breed Genet 7:35–46
  • Keshavkant S, Padhan J, Parkhey S, Naithani SC (2012) Physiological and antioxidant responses of germinating Cicer arietinum seeds to salt stress. Russ J Plant Physiol 59:206–211
  • Khan MF, Wu X, Tipins UR, Ansari GA, Boor PJ (2002) Protein adducts of malondialdehyde and 4-hydroxynonenal in livers of iron loaded rats: quantitation and localization. Toxicology 173:193–201
  • Kumar GNM, Knowles NR (1993) Age of potato seed tubers influences protein synthesis during sprouting. Physiol Plant 89:262–270
  • Kumar GNM, Houtz RL, Knowles RN (1999) Age induced protein modification and increased proteolysis in potato seed tubers. Plant Physiol 119:89–99
  • Kumar M, Kak A, Singh S (2011) Analysis of biochemical and physiological changes during ultra-desiccation in radish (Raphanus sativus). Asian J Plant Sci Res 1:5–21
  • Laemmli UK (1970) Cleavage of structural proteins during the assembly of head bacteriophage T₄. Nature 227:680–685
  • Levine RL, Willians JA, Stadtman ER, Schater E (1994) Carbonyl assay for determination of oxidatively modified proteins. Method Enzymol 233:346–363
  • Martinez-Vincente M, Sovak G, Cuervo AM (2005) Protein degradation and ageing. Exp Gerontol 40:622–633
  • Merheb CW, Cabral H, Gomes E, Da-Silva R (2007) Partial characterization of protease from a thermophilic fungus, Thermoascus aurantiacus, and its hydrolytic activity on bovine casein. Food Chem 104:127–131
  • Murthy UMN, Sun WQ (2000) Protein modification by Amadori and Millard reaction during seed storage: roles of sugar hydrolysis and lipid peroxidation. J Exp Bot 51:1221–1228
  • Murthy UMN, Liang Y, Kumar PP, Sun WQ (2002) Non-enzymatic protein modification by the Millard reaction reduces the activities of scavenging enzymes in Vigna radiata. Physiol Plant 115:213–220
  • Murthy UMN, Kumar PP, Sun WQ (2003) Mechanisms of seed ageing under different storage conditions for Vigna radiata (L.) Wilczek: lipid peroxidation, sugar hydrolysis, Maillard reactions and their relationship to glass state transition. J Exp Bot 54:1057–1067
  • Ogé L, Bourdais G, Bove J, Collet B, Godin B, Granier F, Boutin JP, Job D, Jullien M, Grappin P (2008) Protein repair L-isoaspartyl methyltransferase 1 is involved in both seed longevity and germination vigor in Arabidopsis. Plant Cell 20:3022–3037
  • Oracz K, El-Maarouf Bouteau H, Farrant JM, Cooper K, Belghazi M, Job C, Job D, Corbineau F, Bailly C (2007) ROS production and protein oxidation as a novel mechanism for seed dormancy. Plant J 50:452–465
  • Parkhey S, Naithani SC, Keshavkant S (2012) ROS production and lipid catabolism in desiccating Shorea robusta seeds during ageing. Plant Physiol Biochem 57:261–267
  • Ponist S, Mihalova D, Jancinova V, Snir V, Ondrejickova O, Mascia C, Poli G, Stancikova M, Nosal R, Bauerov K (2010) Reduction of oxidative stress in adjuvant arthritis. Comparison of efficacy of two pyridoindoles: stobadine dipalmitate and SMe1•2HCl. Acta Biochim Polo 57:223–228
  • Pukacka S, Ratajczak E (2006) Antioxidative response of ascorbate-glutathione pathway enzymes and metabolites to desiccation of recalcitrant Acer saccharinum seeds. J Plant Physiol 163:1259–1266
  • Rajjou L, Lovigny Y, Groot PC, Steven Belghaz M, Job C, Job D (2008) Proteome-wide characterization of seed aging in Arabidopsis: a comparison between artificial and natural aging protocols. Plant Physiol 148:620–641
  • Roach T, Beckett RP, Minibayeva FV, Colville L, Whitaker C, Chen H, Bailly C, Kranner I (2010) Extracellular superoxide production, viability and redox poise in response to desiccation in recalcitrant Castanea sativa seeds. Plant Cell Environ 33:59–75
  • Sitte N, Huber M, Grune T, Ladhoff A, Doecke WD, Von Zglinicki T, Davies KJ (2000) Proteasome inhibition by lipofuscin during postmitotic aging of fibroblasts. FASEB J 14:1490–1498
  • Spiro RG (1966) Analysis of sugars found in glycoproteins. Methods Enzymol 8:3–52
  • Strelec I, Ugarcic-Hardi Z, Mario H (2008) Accumulation of Amadori and Maillard products in wheat seeds aged under different storage conditions. Croatica Chemi Acta 81:131–137
  • Sun WQ, Leopold AC (1995) The Maillard reaction and oxidative stress during ageing of soybean seeds. Physiol Plant 94:94–105
  • Szweda PA, Friguet B, Szweda LI (2002) Proteolysis, free radicals and aging. Free Radic Bio Med 33:29–36
  • Tanito M, Michael HE, Kotake Y, Anderson RE (2005) Protein modifications by 4-hydroxynonenal and 4-hydroxyhexanal in light-exposed rat retina. Invest Ophthal Vis Sci 46:3859–3868
  • Vinayachandra Chandrashekar KR (2012) Effect of desiccation on viability and biochemical changes in Knema attenuata seeds. J For Res 23:703–706
  • Wang W, Vignani R, Scali M, Cresti M (2006) A universal and rapid protocol for protein extraction from recalcitrant plant tissues for proteomic analysis. Electrophoresis 27:2782–2786
  • Wettlaufer SH, Leopold AC (1991) Relevance of Amadori and Maillard products to seed deterioration. Plant Physiol 97:165–169
  • Yang P, Fu H, Walker J, Papa CM, Smalle J, Yu-Ming JJ, Vierstra RD (2004) Purification of the Arabidopsis 26 S proteasome biochemical and molecular analysis revealed the presence of multiple isoforms. J Biol Chem 279:6401–6413

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-60ae78c5-0e7e-4e9b-8227-39c29f912c0b
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.