PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2017 | 86 | 3 |

Tytuł artykułu

Early studies on the effect of peptide growth factor phytosulfokine-alpha on Brassica oleracea var. capitata L. protoplasts

Treść / Zawartość

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Phytosulfokines (PSK) are peptidyl growth factors with the potential of inducing cell proliferation. We examined the effect of supplementation of liquid culture medium with 0.1 μM phytosulfokine-α (PSK-α) on protoplast viability and division frequencies in seven accessions of Brassica oleracea var. capitata L., including cultivars and breeding lines. Protoplasts were isolated from leaves and hypocotyls of in vitro grown plants and immobilized in calcium-alginate layers. Cabbage protoplast-derived cells cultured in medium supplemented with 0.1 μM of PSK-α had higher viability and division frequencies compared to cells cultured in PSK-α-free control medium. The effect of PSK-α was more pronounced in low-responding accessions (‘Sława z Gołębiewa’, ‘Ramkila F1’, LM, and LM98); however, in two cultivars with very low response (‘Badger Shipper’ and ‘Oregon 123’), although the division frequencies in the media supplemented with PSK-α were increased over the control, the differences were not significant. Obtained callus colonies were subjected to regeneration. PSK-α supplemented into the liquid culture medium had an indirect effect on shoot regeneration by inducing sustained cell divisions leading to an increase in shoot regeneration in Sława z Gołębiewa and both breeding lines.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

86

Numer

3

Opis fizyczny

Article 3558 [11p.],fig.,ref.

Twórcy

  • Institute of Plant Biology and Biotechnology, Faculty of Biotechnology and Horticulture, University of Agriculture in Cracow, al. 29 listopada 54, 31-425 Cracow, Poland
autor
  • Institute of Plant Biology and Biotechnology, Faculty of Biotechnology and Horticulture, University of Agriculture in Cracow, al. 29 listopada 54, 31-425 Cracow, Poland

Bibliografia

  • 1. Hansen LN, Earle ED. Novel flowering and fatty acid characters in rapid cycling Brassica napus L. resynthesized by protoplast fusion. Plant Cell Rep. 1994;14:151–156. https://doi.org/10.1007/BF00233780
  • 2. Sundberg E, Glimelius K. A method for production of interspecific hybrids within Brassiceacae via somatic hybridization, using resynthesis of Brassica napus as a model. Plant Sci. 1986;43:155–162. https://doi.org/10.1007/BF00221131
  • 3. Yamagishi H, Landgren M, Forsberg J, Glimelius K. Production of asymmetric hybrids between Arabidopsis thaliana and Brassica napus utilizing an efficient protoplast culture system. Theor Appl Genet. 2002;104:959–964. https://doi.org/10.1007/s00122-002-0881-9
  • 4. Glimelius K. High growth rate and regeneration capacity of hypocotyl protoplasts in some Brassicaceae. Physiol Plant. 1984;61:38–44. https://doi.org/10.1111/j.1399-3054.1984.tb06097.x
  • 5. Holme IB, Torp AM, Hansen LN, Andersen SB. Quantitative trait loci affecting plant regeneration from protoplasts of Brassica oleracea. Theor Appl Genet. 2004;108:1513– 1520. https://doi.org/10.1007/s00122-003-1570-z
  • 6. Zhao KN, Bittisnich DJ, Halloran GM, Whitecross MI. Studies of cotyledon protoplast cultures from B. napus, B. campestris and B. oleracea. II: callus formation and plant regeneration. Plant Cell Tissue Organ Cult. 1995;40:73–84. https://doi.org/10.1007/BF00041121
  • 7. Hansen LN, Ortiz R, Andersen SB. Genetic analysis of protoplast regeneration ability in Brassica oleracea. Plant Cell Tissue Organ Cult. 1999;58:127–132. https://doi.org/10.1023/A:1006359804328
  • 8. Jourdan PS, Earle ED, Mutschler MA. Improved protoplast culture and stability of cytoplasmic traits in plants regenerated from leaf protoplasts of cauliflower (Brassica oleracea ssp. botrytis). Plant Cell Tissue Organ Cult. 1990;21:227–236. https://doi.org/10.1007/BF00047615
  • 9. Davies PJ. The plant hormones: their nature, occurrence and functions. In: Davies PJ, editor. Plant hormones biosynthesis, signal transduction, action. Dordrecht: Springer; 2010. p. 1–15. https://doi.org/10.1007/978-94-009-3585-3_1
  • 10. Kiełkowska A, Adamus A. An alginate-layer technique for culture of Brassica oleracea L. protoplasts. In Vitro Cell Dev Biol. 2012;48:265–273. https://doi.org/10.1007/s11627-012-9431-6
  • 11. Robertson D, Earle ED, Mutschler MA. Increased totipotency of protoplasts from Brassica oleracea plants previously regenerated in tissue culture. Plant Cell Tissue Organ Cult. 1988;14:15–24. https://doi.org/10.1007/BF00029571
  • 12. Sheng X, Zhao Z, Yu H, Wang J, Xiaohui Z, Gu H. Protoplast isolation and plant regeneration of different double haploid lines of cauliflower (Brassica oleracea var. botrytis) Plant Cell Tissue Organ Cult. 2011;107:513–520. https://doi.org/10.1007/s11240-011-0002-z
  • 13. Davey MR, Anthony P, Power JB, Lowe KC. Plant protoplasts: status and biotechnological perspectives. Biotechnol Adv. 2005;23:131–171. https://doi.org/10.1016/j.biotechadv.2004.09.008
  • 14. Chen LP, Zhang MF, Xiao QB, Wu JG, Hirata Y. Plant regeneration from hypocotyl protoplasts of red cabbage (Brassica oleracea) by using nurse cultures. Plant Cell Tissue Organ Cult. 2004;77:133–138. https://doi.org/10.1023/B:TICU.0000016811.29125.18
  • 15. Walters TW, Earle ED. A simple, versatile feeder layer system for Brassica oleracea protoplast culture. Plant Cell Rep. 1990;9:316–319. https://doi.org/10.1007/BF00232859
  • 16. Mustafa NR, de Winter W, van Iren F, Verpoorte R. Initiation, growth and cryopreservation of plant cell suspension cultures. Nat Protoc. 2011;6:715–742. https://doi.org/10.1038/nprot.2010.144
  • 17. Folling M, Madsen S, Olesen A. Effect of nurse culture and conditioned medium on colony formation and plant regeneration from Lolium perenne protoplasts. Plant Sci. 1995;108:229–239. https://doi.org/10.1016/0168-9452(95)04146-L
  • 18. Somers DA, Birnberg PR, Petersen WL, Brenner ML. The effect of conditioned medium on colony formation from black Mexican sweet corn protoplast. Plant Sci. 1987;53:249–256. https://doi.org/10.1016/0168-9452(87)90162-2
  • 19. Bellincampi D, Morpurgo G. Evidence for the presence of a second conditioning factor in plant cell culture. Plant Sci. 1989;65:125–130. https://doi.org/10.1016/0168-9452(89)90215-X
  • 20. Sargent PA, King J. Investigations of growth-promoting factors in conditioned soybean root cells and in the liquid medium in which they grow: ammonium, glutamine, and amino acids. Can J Bot. 1974;52:1747–1755. https://doi.org/10.1139/b74-226
  • 21. Stuart R, Street HE. Studies on the growth in culture of plant cells. J Exp Bot. 1971;22:96– 106. https://doi.org/10.1093/jxb/22.1.96
  • 22. Matsubayashi Y, Sakagami Y. Phytosulfokine, sulfated peptides that induce the proliferation of single mesophyll cells of Asparagus officinalis L. Proc Natl Acad Sci USA. 1996;93:7623–7627. https://doi.org/10.1073/pnas.93.15.7623
  • 23. Matsubayashi Y, Hanai H, Hara O, Sakagami Y. Active fragments and analogs of the plant growth factor, phytosulfokine: structure–activity relationship. Biochem Biophys Res Commun. 1996;225:209–214. https://doi.org/10.1006/bbrc.1996.1155
  • 24. Bahyrycz A, Matsubayashi Y, Ogawa M, Sakagami Y, Konopinska D. Plant peptide hormone phytosulfokine (PSK-α): synthesis of new analogues and their biological evaluation. J Pept Sci. 2004;10:462–469. https://doi.org/10.1002/psc.492
  • 25. Yang G, Shen S, Kobayashi T, Matsubayashi Y, Sakagami Y, Kamada H. Stimulatory effects of a novel peptidyl plant growth factor, phytosulfokine-α on the adventitious bud formation from callus of Antirrhinum majus. Plant Biotechnol. 1999;16:231–234. http://doi.org/10.5511/plantbiotechnology.16.231
  • 26. Kutschmar A, Rzewuski G, Stührwohldt N, Beemster GTS, Inzé D, Sauter M. PSK-α promotes root growth in Arabidopsis. New Phytol. 2009;181:820–831. https://doi.org/10.1111/j.1469-8137.2008.02710.x
  • 27. Stührwohldt N, Dahlke RI, Steffens B, Johnson A, Sauter M. Phytosulfokine-α controls hypocotyl length and cell expansion in Arabidopsis thaliana through phytosulfokine receptor 1. PLoS One. 2011;6(6):e21054. https://doi.org/10.1371/journal.pone.0021054
  • 28. Hanai H, Matsuno T, Yamamoto M, Matsubayashi Y, Kobayashi T, Kamada H, et al. A secreted peptide growth factor, phytosulfokine, acting as a stimulatory factor of carrot somatic embryo formation. Plant Cell Physiol. 2000;41:27–32. https://doi.org/10.1093/pcp/41.1.27
  • 29. Igasaki T, Akashi N, Ujino-Hara T, Matsubayashi Y, Sakagami Y, Shinohara K. Phytosulfokine stimulates somatic embryogenesis in Cryptomeria japonica. Plant Cell Physiol. 2003;44:1412–1416. https://doi.org/10.1093/pcp/pcg161
  • 30. Yamakawa S, Sakuta C, Matsubayashi Y, Sakagami Y, Kamada H, Satoh S. The promotive effects of a peptidyl plant growth factor, phytosulfokine-alpha, on the formation of adventitious roots and expression of a gene for a root-specific cystatin in cucumber hypocotyls. J Plant Res. 1998;111:453–458. https://doi.org/10.1007/BF02507810
  • 31. Matsubayashi Y, Takagi L, Sakagami Y. Phytosulfokine-alpha, a sulfated pentapeptide, stimulates the proliferation of rice cells by means of specific high-and low-affinity binding sites. Proc Natl Acad Sci USA. 1997;94:13357–13362 https://doi.org/10.1073/pnas.94.24.13357
  • 32. Grzebelus E, Szklarczyk M, Greń J, Śniegowska K, Jopek M, Kacińska I, et al. Phytosulfokine stimulates cell divisions in sugar beet (Beta vulgaris L.) mesophyll protoplast cultures. Plant Growth Regul. 2012;67:93–100. https://doi.org/10.1007/s10725-011-9654-2
  • 33. Murashige T, Skoog F. A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant. 1962;15:473–497. https://doi.org/10.1111/j.1399-3054.1962.tb08052.x
  • 34. Kiełkowska A, Adamus A. Embedding in filter sterilized alginate enhances Brassica oleracea L. protoplast culture. Acta Biol Crac Ser Bot. 2014;56(2):20–26. https://doi.org/10.2478/abcsb-2014-0018
  • 35. Dirks R, Sidorov V, Tulmans C. A new protoplast culture in Daucus carota L. and its applications for mutant selection and transformation. Theor Appl Genet. 1996;93:809– 815. https://doi.org/10.1007/BF00224080
  • 36. Anthony P, Otoni W, Power JB, Lowe KC, Davey MR. Protoplast isolation culture, and plant regeneration from Passiflora. In: Hall RD, editor. Plant cell culture protocols. Totowa, NJ: Humana Press; 1999. p. 169–181. (Methods in Molecular Biology; vol 111). https://doi.org/10.1385/1-59259-583-9:169
  • 37. Damm B, Willmitzer L. Regeneration of fertile plants from protoplasts of different Arabidopsis thaliana genotypes. Mol Gen Genet. 1988;213:15–20. https://doi.org/10.1007/BF00333392
  • 38. Gamborg OL, Miller RA, Ojima K. Nutrient requirements of suspension cultures of soybean root cells. Exp Cell Res. 1968;50:151–158. https://doi.org/10.1016/0014-4827(68)90403-5
  • 39. Ryan CA, Pearce G. Polypeptide hormones. Plant Physiol. 2001;125:65–68. https://doi.org/10.1104/pp.125.1.65
  • 40. Asif M, Eudes F, Randhawa H, Amundsen E, Spaner D. Phytosulfokine alpha enhances microspore embryogenesis in both triticale and wheat. Plant Cell Tissue Organ Cult. 2014;116:125–130. https://doi.org/10.1007/s11240-013-0379-y
  • 41. Maćkowska K, Jarosz A, Grzebelus E. Plant regeneration from leaf-derived protoplasts within the Daucus genus: effect of different conditions in alginate embedding and phytosulfokine application. Plant Cell Tissue Organ Cult. 2014;117:241–252. https://doi.org/10.1007/s11240-014-0436-1
  • 42. Tiburcio AF, Kaur-Sawhney R, Galston AW. Polyamine metabolism and osmotic stress – relation to protoplast viability. Plant Physiol. 1986;82:369–374. https://doi.org/10.1104/pp.82.2.369
  • 43. Kirti PB, Bhat SR, Kumar VD, Parkash S, Chopra VL. A simple protocol for regenerating mesophyll protoplasts of vegetable brassicas. J Plant Biochem Biotechnol. 2001;10:49–51. https://doi.org/10.1007/BF03263106
  • 44. Eun CH, Ko SM, Matsubayashi Y, Sakagami Y, Kamada H. Phytosulfokine-α requires auxin to stimulate carrot non embryogenic cell proliferation. Plant Physiol Biochem. 2003;41:447–452. https://doi.org/10.1016/S0981-9428(03)00052-4
  • 45. Simmonds DH, Long NE, Keller WA. High plating efficiency and plant regeneration frequency in low density protoplast cultures derived from an embryogenic Brassica napus cell suspension. Plant Cell Tissue Organ Cult. 1991;27:231–241. https://doi.org/10.1007/BF00157586
  • 46. Jie EY, Kim SW, Jang HR, In DS, Liu JR. Myo-inositol increases the plating efficiency of protoplast derived from cotyledon of cabbage (Brassica oleracea var. capitata). J Plant Biotechnol. 2011;38:69–76. https://doi.org/10.5010/JPB.2011.38.1.069

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-608b3253-dc42-4e12-801f-b554f24cf9a1
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.