PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2016 | 21 | 1 |

Tytuł artykułu

Effects of high extracellular magnesium on electrophysiological properties of membranes of Retzius neurons in leech Haemopis sanguisuga

Treść / Zawartość

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Magnesium is a bioessential cation with an important role in the function of excitable cells both in health and disease. Magnesium has therapeutic use as an anticonvulsant, anaesthetic, analgesic and antiarrhythmic agent. The aim of this work was to examine in detail the effects of high extracellular Mg2+ on the nerve cell membrane using classical electrophysiology techniques. The experiments were conducted on Retzius neurons in the isolated segmental ganglia of the leech Haemopis sanguisuga. Intracellular recording of membrane potential and electrical activity, as well as current clamp experiments to examine membrane input resistance and excitability, were performed prior to and during application of 20 mmol dm-3 MgCl2. The paper presents our findings on the effects of high Mg2+ on basic electrophysiological properties and activity of Retzius cells. Depolarization of the membrane potential, a decrease in the frequency of spontaneous activity, an increase in threshold potential, a decrease in cell excitability and an increase in input membrane resistance were found following an application of high Mg2+ solution. The underlying mechanisms of the overall suppressive action of Mg2+ on our cell model are discussed to be multiple Mg2+ effects on different ion channel conductances, with a possibly dominant blockade of Na+ channels and a probable modulation of activity of Ca2+-activated K+ channels by Mg2+.

Wydawca

-

Rocznik

Tom

21

Numer

1

Opis fizyczny

p.221-230,fig.,ref.

Twórcy

  • Institute for Pathological Physiology, School of Medicine, University of Belgrade, 9 Dr Subotica Street, 11000 Belgrade, Serbia
autor
  • Institute for Pathological Physiology, School of Medicine, University of Belgrade, Belgrade, Serbia
autor
  • Institute for Pathological Physiology, School of Medicine, University of Belgrade, Belgrade, Serbia
autor
  • Institute for Pathological Physiology, School of Medicine, University of Belgrade, Belgrade, Serbia
autor
  • Institute for Pathological Physiology, School of Medicine, University of Belgrade, Belgrade, Serbia
autor
  • Institute for Pharmacology, Clinical Pharmacology and Toxicology, School of Medicine, University of Belgrade, Belgrade, Serbia

Bibliografia

  • Akhtar M.I., Ullah H., Hamid M. 2011. Magnesium, a drug of diverse use. J. Pak. Med. Assoc., 61(12): 1220-1225.
  • Baha M., Guiet-Baha A., Duhlach J. 1993. Regulation of sodium and potassium pathways by magnesium in cell membranes. Magnes. Res., 6(2): 167-177.
  • Beleslin B. 1971. Effects of different external media on the leech ganglion cells interaction. Period. Biol., 73: 63-67.
  • Camehon W.E., Núnez-Abades P.A., Kehman I.A., Hodgson T.M. 2000. Role of potassium conductances in determining input resistance of developing brain stem motoneurons. J. Neurophy-siol., 84(5): 2330-2339.
  • Dean J.A., Leake I.D. 1988. Pharmacological control of the pattern of activity in leech Retzius neurones. Comp. Biochem. Physiol. C, 89(1): 31-38.
  • Del Castillo J., Katz B. 1954. The effect of magnesium on the activity of motor nerve endings. J. Physiol., 124(3): 553-559.
  • Dhibben W.H., Eisenman L.N., Mennehick S. 2010. Magnesium induces neuronal apoptosis by suppressing excitability. Cell Death Disease, 1(8):e63. DOI: 10.1038/cddis.2010.39
  • Ehulkah s.D., Dambach G.E., Mendeh D. 1974. The effect of magnesium at motoneurons of the isolated spinal cord of the frog. Brain Res., 66: 413-424.
  • Fawcett W.J., Haxby E.J., Male D.A. 1999. Magnesium: physiology and pharmacology. Br. J. Anaesth., 83(2): 302-320.
  • Ferguson W.B. 1991. Competitive Mg2+ block of a large-conductance, Ca2+ - activated K+ channel in rat skeletal muscle. Ca2+, Sr2+, and Ni2+ also block. J. Gen. Physiol., 98(1): 163-181.
  • Furukawa Y., Kasai N., Torimitsu K. 2009. Effect of Mg2+ on neural activity of rat cortical and hippocampal neurons in vitro. Magnes Res., 22(3): 174-181.
  • Guiet-Bara A., Durlach J., Baha M. 2007. Magnesium ions and ionic channels: activation, inhibition or block - a hypothesis. Magnes. Res., 20(2): 100-106.
  • Günzel D., ScHLUE W.E. 1996. Sodium-magnesium antiport in Retzius neurones of the leech Hirudo medicinalis. J. Physiol., 491.3, 595-608.
  • Haensch C.A. 2010. Cerebrospinal fluid magnesium level in different neurological disorders. Neurosci. Med., 1: 60-63.
  • Jahnen-Dechent W., Kettelee M. 2012. Magnesium basics. Clin. Kidney J., 5 (Suppl 1): 3-14.
  • James M.F. 2009. Magnesium: an emerging drug in anaesthesia. Br. J. Anaesth., 103(4): 465-467.
  • James M.F. 2010. Magnesium in obstetrics. Best. Pract. Res. Clin. Obstet. Gynaecol., 24(3): 327-337.
  • Jović V. 1999. Environmental geochemistry of magnesium. In: Magnesium in the environment and in organisms. Serbian Acad. of Sciences and Arts, vol. XCII, Book 1, Belgrade, 3-12.
  • Kato G., Kelly J.S., Khnjević K., Somjen G. 1968. Anaesthetic action of magnesium ions. Can. Anaesth. Soc. J., 15(6): 539-544.
  • Kelly J.S., Kenjevic K., Somjen G. 1969. Divalent cations and electrical properties of cortical cells. J. Neurobiol., 1(2): 197-208.
  • Kleinhaus A.L., Angstadt J.D. 1995. Diversity and modulation of ionic conductances in leech neurons. J. Neurobiol., 27(3): 419-433.
  • Lin F., Conti F., Moean О. 1991. Competitive blockage of the sodium channel by intracellular magnesium ions in central mammalian neurones. Eur. Biophys. J., 19(3): 109-118.
  • Mclahnon J.G., Sawyeh D. 1993. Effects of divalent cations on the activation of a calcium-dependent potassium channel in hippocampal neurons. Pflügers Arch., 424(1): 1-8.
  • Miyamoto Y., Yamamoto H., Muhakami H., Kamiyama, N., Fukuda M. 2004. Studies on cerebrospinal fluid ionized calcium and magnesium concentrations in convulsive children. Pediatr. Int., 46(4): 394-397.
  • Mohales E., Cole W.C., Eemillaed C.V., Leblane N. 1996. Block of large conductance Ca(2+)-ac-tivated K+ channels in rabbit vascular myocytes by internal Mg2+ and Na+. J. Physiol., 495(Pt 3): 701-716.
  • Núnez-Abades P.A., Pattillo J.M., Hodgson T.M., Camehon W.E. 2000. Role of synaptic inputs in determining input resistance of developing brain stem motoneurons. J. Neurophysiol., 84(5), 2317-2329.
  • Sadeh M., Blatt I., Mahtinovits G., Kahni A., Goldhammeh Y. 1991. Treatment of porphyric convulsions with magnesium sulfate. Epilepsia, 32(5): 712-715.
  • Sang N., Meng Z. 2002. Blockade by magnesium of sodium currents in acutely isolated hippocampal CA1 neurons of rat. Brain Res., 952(2): 218-221.
  • Šihvinskas E., Lauhinaitis, E. 2002. Use of magnesium sulfate in anesthesiology. Medicina (Kaunas), 38(7): 695-698.
  • Somjen G.G. 2004. The regulation of brain ions. In: Ions in the brain: normal function, seizures and stroke. Oxford University Press, New York), 13-16.
  • Somjen G.G., Kato, G. 1968. Effects of magnesium and calcium on neurones in the central nervous system. Brain Res., 9(1): 161-164.
  • Stewaht E.E., Nicholls J.G., Adams W.B. 1989. Na+, K+ and Ca2+ currents in identified leech neurones in culture. J. Exp. Biol., 141: 1-20.
  • Wojtowicz J.M., Marshall K.C., Hendelman W.J. 1977. Depression by magnesium ion of neuronal excitability in tissue cultures of central nervous system. Can. J. Physiol. Pharmacol., 55(3): 367-372.
  • Wolf F.I., Trapani V. 2008. Cell (patho)physiology of magnesium. Clin. Sci. (Lond), 114(1): 27-35.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-607697b7-9f43-4acb-ba80-d16f0b3c792c
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.