PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2015 | 60 | 1 |

Tytuł artykułu

The youngest ctenocystoids from the Upper Ordovician of the United Kingdom and the evolution of the bilateral body plan in echinoderms

Treść / Zawartość

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
During the early Palaeozoic, echinoderm body plans were much more diverse than they are today, displaying four distinct types of symmetry. This included the bilateral ctenocystoids, which were long thought to be restricted to the Cambrian. Here, we describe a new species of ctenocystoid from the Upper Ordovician of Scotland (Conollia sporranoides sp. nov.). This allows us to revise the genus Conollia, which was previously based on a single poorly-known species from the Upper Ordovician of Wales (Conollia staffordi). Both these species are characterized by a unique morphology consisting of an elongate-ovoid body covered in spines, which clearly distinguishes them from their better-known Cambrian relatives; they are interpreted as infaunal or semi-infaunal burrowers from deep-water environments. This indicates that the ctenocystoid body plan was not fixed early in the evolution of the group, and they most likely modified their structure as an adaptation to a new mode of life in the Ordovician.

Wydawca

-

Rocznik

Tom

60

Numer

1

Opis fizyczny

p.39–48,fig.,ref.

Twórcy

autor
  • School of Earth Sciences, University of Bristol, Life Sciences Building, 24 Tyndall Avenue, Bristol BS8 1TQ, U.K.
  • Department of Natural Sciences, National Museum of Scotland, Chambers Street, Edinburgh EH1 1JF, U.K.
autor
  • Department of Paleobiology, National Museum of Natural History, Smithsonian Institution, Washington DC, 20013-7012, USA
  • Museo Geominero, Instituto Geologico y Minero de Espana, C/Manuel Lasala, 44-9º B, 50006 Zaragoza, Spain

Bibliografia

  • Botting, J.P., Muir, L.A., Sutton, M.D., and Barnie, T. 2011. Welsh Gold: a new exceptionally preserved pyritised Ordovician biota. Geology 39: 879–882.
  • Brett, C.E., Moffat, H.A., and Taylor, W.L. 1997. Echinoderm taphonomy, taphofacies, and lagerstätten. In: J.A. Waters and C.G. Maples (eds.), Geobiology of Echinoderms. Paleontological Society Papers 3: 147–190.
  • Bromley, R.G. 1996. Trace Fossils: Biology, Taphonomy and Applications. 361 pp. Chapman & Hall, London.
  • Clark, R.B. 1981. Locomotion and the phylogeny of the Metazoa. Bolletino di Zoologia 48: 11–28.
  • Daniel, T.L. 1984. Unsteady aspects of aquatic locomotion. American Zoologist 24: 121–134.
  • David, B., Lefebvre, B., Mooi, R., and Parsley, R. 2000. Are homalozoans echinoderms? An answer from the extraxial-axial theory. Paleobiology 26: 529–555.
  • Domínguez Alonso, P. 1999. The early evolution of echinoderms: the class Ctenocystoidea and its closest relatives revisited. In: M.D. Candia Carnevali and F. Bonasoro (eds.), Echinoderm Research 1998, 263–268. Balkema, Rotterdam.
  • Domínguez Alonso, P. 2004. Sistemática, anatomía, estructura y función de Ctenocystoidea (Echinodermata, Carpoidea) del Paleozoico Inferior. 538 pp. Universidad Complutense de Madrid, Madrid.
  • Dzik, J. and Orłowski, S. 1995. Primitive ctenocystoid echinoderm from the earliest Middle Cambrian of Poland. Annales de Paléontologie 81: 17–35.
  • Fatka, O. and Kordule, V. 1985. Etoctenocystis bohemica gen. et sp. nov., new ctenocystoid from Czechoslovakia (Echinodermata, Middle Cambrian). Věstník Ústředního ústavu geologického 60: 225–230.
  • Fauchald, K. and Rouse, G. 1997. Polychaete systematics: past and present. Zoologica Scripta 26: 71–138.
  • Fortey, R.A. 2006. A new deep-water Upper Ordovician (Caradocian) trilobite fauna from South-West Wales. Geological Journal 41: 243–253.
  • Gorzelak, P. and Salamon, M.A. 2013. Experimental tumbling of echinoderms— taphonomic patterns and implications. Palaeogeography, Palaeoclimatology, Palaeoecology 386: 569–574.
  • Heffernan, J.M. and Wainwright, S.A. 1974. Locomotion of the holothurian Euapta lappa and redefinition of peristalsis. Biology Bulletin 147: 95–104.
  • ICZN. 1999. International Code of Zoological Nomenclature, 4th edition. 306 pp. The International Trust for Zoological Nomenclature, London. ICZN. 2012. Amendment of articles 8, 9, 10, 21 and 78 of the international code of zoological nomenclature to expand and refine methods of publication. Zootaxa 3450: 1–7.
  • Ingham, J.K. 1992. Girvan foreshore. In: J.D. Lawson and S.D. Weedon (eds.), Geological Excursions Around Glasgow and Girvan, 396–416. Glasgow Geological Society, Glasgow.
  • Jefferies, R.P.S., Brown, N.A., and Daley, P.E.J. 1996. The early phylogeny of chordates and echinoderms and the origin of chordate left-right asymmetry and bilateral symmetry. Acta Zoologica 77: 101–122.
  • Jell, P.A., Burrett, C.F., and Banks, M.R. 1985. Cambrian and Ordovician echinoderms from eastern Australia. Alcheringa 9: 183–208.
  • Merz, R.A. and Woodin, S.A. 2006. Polychaete chaetae: function, form, and phylogeny. Integrative and Comparative Biology 46: 481–496.
  • Nichols, D. 1959. Changes in the chalk heart-urchin Micraster interpreted in relation to living forms. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences 242: 347–437.
  • Parsley, R.L. 1999. The Cincta (Homostelea) as blastozoans. In: M.D. Candia Carnevali and F. Bonasoro (eds.), Echinoderm Research 1998, 369–375. Balkema, Rotterdam.
  • Parsley, R.L. and Prokop, R.J. 2004. Functional morphology and paleoecology of some sessile Middle Cambrian echinoderms from the Barrandian region of Bohemia. Bulletin of Geosciences 79: 147–156.
  • Rahman, I.A. and Clausen, S. 2009. Re-evaluating the palaeobiology and affinities of the Ctenocystoidea (Echinodermata). Journal of Systematic Palaeontology 7: 413–426.
  • Robison, R.A. and Sprinkle, J. 1969. Ctenocystoidea: new class of primitive echinoderms. Science 166: 1512–1514.
  • Smith, A.B. and Crimes, T.P. 1983. Trace fossils formed by heart urchins —a study of Scolicia and related traces. Lethaia 16: 79–92.
  • Smith, A.B., Zamora, S., and Álvaro, J.J. 2013. The oldest echinoderm faunas from Gondwana show that echinoderm body plan diversification was rapid. Nature Communications 4: 1385.
  • Sprinkle, J. 1983. Patterns and problems in echinoderm evolution. In: M. Jangoux and J.M. Lawrence (eds.), Echinoderm Studies, 1–18. Balkema, Rotterdam.
  • Sprinkle, J. and Robison, R.A. 1978. Addendum to subphylum Homalozoa—Ctenocystoids. In: R.C. Moore and C. Teichert (eds.), Treatise on Invertebrate Paleontology, Part T, Echinodermata 2, Crinoidea, T998–T1002. Geological Society of America, Boulder and the University of Kansas, Lawrence.
  • Stewart, S.E. and Owen, A.W. 2008. Probing the deep shelf: a Lagerstätte from the Upper Ordovician of Girvan, southwest Scotland. Lethaia 41: 139–146.
  • Sumrall, C.D. 1997. The role of fossils in the phylogenetic reconstruction of Echinodermata. In: J.A. Waters and C.G. Maples (eds.), Geobiology of Echinoderms. Paleontological Society Papers 3: 267–288.
  • Sumrall, C.D. and Wray, G.A. 2007. Ontogeny in the fossil record: diversification of body plans and the evolution of “aberrant” symmetry in Paleozoic echinoderms. Paleobiology 33: 149–163.
  • Sutton, M.D., Garwood, R.J., Siveter, D.J., and Siveter, D.J. 2012. SPIERS and VAXML; a software toolkit for tomographic visualization and a format for virtual specimen interchange. Palaeontologia Electronica 15: 5T.
  • Turbeville, J.M. and Ruppert, E.E. 1983. Epidermal muscles and peristaltic burrowing in Carinoma tremaphoros (Nermertini): correlates of effective burrowing without segmentation. Zoomorphology 103: 103–120.
  • Ubaghs, G. 1975. Early Palaeozoic echinoderms. Reviews in Earth and Planetary Science 3: 79–98.
  • Ubaghs, G. 1987. Échinodermes nouveaux du Cambrien moyen de la Montagne Noire (France). Annales de Paléontologie 73: 1–27.
  • Ubaghs, G. and Robison, R.A. 1988. Homalozoan echinoderms of the Wheeler Formation (Middle Cambrian) of western Utah. University of Kansas Paleontological Contributions, Paper 120: 1–17.
  • Van Roy, P., Orr, P.J., Botting, J.P., Muir, L.A., Vinther, J., Lefebvre, B., el Hariri, K., and Briggs, D.E.G. 2010. Ordovician faunas of Burgess Shale type. Nature 465: 215–218.
  • Zamora, S., Rahman, I.A., and Smith, A.B. 2012. Plated Cambrian bilaterians reveal the earliest stages of echinoderm evolution. PLoS ONE 7: e38296.
  • Zamora, S., Lefebvre, B., Álvaro, J.J., Clausen, S., Elicki, O., Fatka, O., Jell, P., Kouchinsky, A., Lin, J.-P., Nardin, E., Parsley, R., Rozhnov, S., Sprinkle, J., Sumrall, C.D., Vizcaïno, D., and Smith, A.B. 2013. Global Cambrian echinoderm diversity and palaeobiogeography. In: D.A.T. Harper and T. Servais (eds.), Early Palaeozoic Palaeobiogeography and Palaeogeography. Geological Society, London, Memoirs 38: 157–171.

Typ dokumentu

Bibliografia

Identyfikator YADDA

bwmeta1.element.agro-6040b1a9-8fb0-4326-b801-659a9be955ec
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.