PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2012 | 19 | 2 |

Tytuł artykułu

Effects of brief whole-body vibration on bone metabolic and imunological indices in rats

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN

Słowa kluczowe

Wydawca

-

Rocznik

Tom

19

Numer

2

Opis fizyczny

p.73-76,ref.

Twórcy

autor
  • Department of Hygiene, University School of Physical Education, Poznan, Poland
autor
  • Department of Biochemistry, University School of Physical Education, Poznan, Poland
autor
  • Department of Biochemistry, University School of Physical Education, Poznan, Poland
  • Department of Neurobiology, University School of Physical Education, Poznan, Poland
autor
  • Department of Neurobiology, University School of Physical Education, Poznan, Poland

Bibliografia

  • 1. Rubin C, Recker R, Cullen D, et al. Prevention of postmenopausal bone loss by a low-magnitude, high-frequency mechanical stimuli: a clinical trial assessing compliance, efficacy, and safety. J Bone Min¬er Res. 2004; 19 (3): 343-351.
  • 2. Verschueren SM, Roelants M, Delecluse C, et al. Effect of 6-month whole body vibration training on hip density, muscle strength, and postural control in postmenopausal women: a randomized con¬trolled pilot study. J Bone Miner Res. 2004; 19 (3): 352-359.
  • 3. Garman R, Gaudette G, Donahue LR, et al. Low-level accelerations applied in the absence of weight bearing can enhance trabecular bone formation. J Orthop Res. 2007; 25 (6): 732-740.
  • 4. Sehmisch S, Galal R, Kolios L, et al. Effects of low-magnitude, high- frequency mechanical stimulation in the rat osteopenia model. Osteoporos Int. 2009; 20 (12): 1999-2008.
  • 5. Xie L, Rubin C, Judex S. Enhancement of the adolescent murine mus¬culoskeletal system using low-level mechanical vibrations. J Appl Physiol. 2008; 104 (4): 1056-1062.
  • 6. Dina OA, Joseph EK, Levine JD, Green PG. Mechanisms mediating vibration-induced chronic musculoskeletal pain analyzed in the rat. J Pain. 2010; 11 (4): 369-377.
  • 7. Krajnak K, Miller GR, Waugh S, et al. Characterization of frequency- dependent responses of the vascular system to repetitive vibration. J Occup Environ Med. 2010; 52 (6): 584-594.
  • 8. Broadbent S, Rousseau JJ, Thorp RM, et al. Vibration therapy reduces plasma IL-6 and muscle soreness after downhill running. Br J Sports Med. 2010; 44 (12): 888-894.
  • 9. Judex S, Rubin CT. Is bone formation induced by high-frequency mechanical signals modulated by muscle activity? J Musculoskelet Neuronal Interact. 2010; 10 (1): 3-11.
  • 10. Rubin CT, Lanyon LE. Osteoregulatory nature of mechanical stimuli: Function as a determinant for adaptive remodeling in bone. J Or¬thop Res. 1987; 5 (2): 300-310.
  • 11. LaMothe J, Zernicke RF. Rest insertion combined with high-frequency loading enhances osteogenesis. J Appl Physiol. 2004; 96 (5):1788- -1793.
  • 12. Delecluse C, Roelants M, Verschueren S. Strength increase after whole-body vibration compared with resistance training. Med Sci Sports Exerc. 2003; 35 (6): 1033-1041.
  • 13. Burke D, Hagbarth KE, Löfstedt L, Wallin BG. The responses of human muscle spindle endings to vibration of non- contracting muscles. J Physiol. 1976; 261 (3): 673-693.
  • 14. Grande G, Cafarelli E. la Afferent input alters the recruitment thresh¬olds and firing rates of single human motor units. Exp Brain Res. 2003; 150 (4): 449-457.
  • 15. Tanaka SM, Li J, Duncan RL, et al. Effects of broad-frequency vibration on cultured osteoblasts. J Biomech. 2003; 36 (1): 73-80.
  • 16. Oxlund BS, 0rtoft G, Andreassen TT, Oxlund H. Low-intensity, high- frequency vibration appears to prevent the decrease in strength of the femur and tibia associated with ovariectomy of adult rats. Bone. 2003; 32 (1): 69-77.
  • 17. Torvinen S, Kannus P, Sievänen H, et al. Effect of 8-month vertical whole body vibration on bone, muscle performance, and body bal¬ance: a randomized controlled study. J Bone Miner Res. 2003; 18 (5): 876 -884.
  • 18. Griffin MJ. Minimum health and safety requirements for workers ex¬posed to hand-transmitted vibration and whole-body vibration in the European Union; a review. Occup Environ Med. 2004; 61 (5): 387-397.
  • 19. Chen X, Green PG, Levine JD. Neuropathic pain-like alternations in muscle nociceptor function associated with vibration-induced mus¬cle pain. Pain. 2010; 151 (2): 460-466.
  • 20. König A, Muhlbauer RC, Fleisch H. Tumor necrosis factor alpha and interleukin-1 stimulate bone resorption in vivo as measured by [3-H] tetracycline excretion from prelabeled mice. J Bone Miner Res. 1988; 3 (6): 621-627.
  • 21. Hofbauer LC, Heufelder AE. Role of receptor activator of nuclear factor-kappaB ligand and osteoprotegerin in bone cell biology. J Mol Med. 2001; 79 (5-6): 243-253.
  • 22. Graham LS, Parhami F, Tintut Y, et al. Oxidized lipids enhance RANKL production by T lymphocytes: implications for lipid-induced bone loss. Clin Immunol. 2009; 133 (2): 265-275.
  • 23. Panizo S, Cardus A, Encinas M, et al. RANKL increases vascular smooth muscle cell calcification through a RANK-BMP4-dependent pathway. Circ Res. 2009; 104: 1041-1048.
  • 24. Miranda-Cards ME, Benito-Miguel M, Balsa A, et al. Peripheral blood T lymphocytes from patients with early rheumatoid arthritis express RANKL and interleukin-15 on the cell surface and promote osteoclas- togenesis in autologous monocytes. Arthritis Rheum. 2006; 54 (4): 1151-1164.
  • 25. Brändström H, Björkman T, Ljunggren O. Regulation of osteoprote¬gerin secretion from primary cultures of human bone marrow stro¬mal cells. Biochem Biophys Res Commun. 2001; 280 (3): 831 -385.
  • 26. Nakashima T, Kobayashi Y, Yamasaki S, et al. Protein expression and functional difference of membrane-bound and soluble receptor ac¬tivator of NF-kappaB ligand: modulation of the expression by osteo¬tropic factors and cytokines. Biochem Biophys Res Commun. 2000; 275 (3): 768-775.
  • 27. Kim CH, Kim KH, Jacobs CR. Effects of high frequency loading on RANKL and OPG mRNA expression in ST-2 murine stromal cells. BMC Musculoskelet Disord. 2009; 10: 109-116.
  • 28. Lau E, Al-Dujaili S, Guenther A, et al. Effect of low-magnitude, high- frequency vibration on osteocytes in the regulation of osteoclasts. Bone. 2010; 46: 1508-1515.
  • 29. Findlay D, Chehade M, Tsangari H, et al. Circulating RANKL is inversely related to RANKL mRNA levels in bone in osteoarthritic males. Arthri¬tis Res Ther. 2008; 10 (1): R2.
  • .

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-60331a73-aac2-4c60-9870-b5a34ea8ccfb
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.