PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2017 | 26 | 6 |

Tytuł artykułu

A parametric malmquist analysis of carbon emission oerformance and Its dynamic variation in China’s thermal power generation

Autorzy

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
This paper employs a parametric Malmquist index to measure carbon emission performance and its dynamic variation of China’s thermal power generation sector from 2003 to 2013. The parametric stochastic frontier analysis (SFA) is applied to estimate the total factor carbon emission performance (TFCP), while the Malmquist carbon emission performance index (MCPI) is used to measure the dynamic change. The main findings are as follows: 1. The average value of TFCP shows an increasing trend but varies among regions. In addition, the investment-based regulations and the efficiency of fuel utilization have positive effects on TFCP, while the effects of R&D expenditure and fee-based regulations are insignificant. 2. The MCPI of China’s provincial thermal power industry grew by an average of 3.1% annually and was mainly driven by the efficiency change component. 3. According to the average levels of TFCP and MCPI, the 30 provinces are divided into four categories, which provide a scientific basis for policymakers to implement regional-oriented strategies for the improvement of both TFCP and MCPI.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

26

Numer

6

Opis fizyczny

p.2801-2809,fig.,ref.

Twórcy

autor
  • Department of Economics and Management, North China Electric Power University, 619 Yonghua North Street, Baoding, China
autor
  • Department of Economics and Management, North China Electric Power University, 619 Yonghua North Street, Baoding, China

Bibliografia

  • 1. Chen Q.X., Kang C.Q., Ming H., Wang Z.Y., Xia Q., Xu, G.X. Assessing the low-carbon effects of inter-regional energy delivery in China’s electricity sector. Renewable and Sustainable Energy Reviews 32, 671, 2014.
  • 2. Kaya Y., Yokobori K. Environment, Energy and Economy: Strategies for Sustainability. Bookwell Publications, Delhi, 1999.
  • 3. Sun J.W. The decrease of CO₂ emission intensity is decarbonization at national and global levels. Energy Policy, 33, 975, 2005.
  • 4. Tol R.S.J., Pacala S.W., Socolow R.H. Understanding long-term energy use and carbon emissions in the USA. Journal of Policy Modeling 31, 425, 2009.
  • 5. Zhou P., Ang B.W., Han J.Y. Total factor carbon emission performance: A Malmquist index analysis. Energy Economics, 32, 194, 2010.
  • 6. Zaim O, Taskin F. Environmental efficiency in carbon dioxide emissions in the OECD: a non-parametric approach. Journal of Environmental Management 58, 95, 2000.
  • 7. Guo X.D., Zhu L., Fan Y., Xie B.C. Evaluation of potential reductions in carbon emissions in Chinese provinces based on environmental DEA. Energy Policy 39, 2352, 2011.
  • 8. Wang K., Yu S.W., Zhang W. China’s regional energy and environmental efficiency: A DEA window analysis based dynamic evaluation. Mathematical and Computer Modelling 58, 1117, 2013.
  • 9. Lin B.Q., Du K.R. Energy and CO₂ emissions performance in China's regional economies: Do market-oriented reforms matter? Energy Policy 78,113, 2015.
  • 10. Zhou G.H., Chung W., Zhang X.L. A study of carbon dioxide emissions performance of China's transport sector. Energy 50, 302, 2013.
  • 11. Zhang N., Zhou P., Kung C.C. Total-factor carbon emission performance of the Chinese transportation industry: A bootstrapped non-radial Malmquist index analysis. Renewable and Sustainable Energy Reviews 41, 584, 2015.
  • 12. Yang H., Pollitt M. Incorporating both undesirable and uncontrollable variables into DEA: the performance of Chinese coal-fired power plants. European Journal of Operational Research 197, 1095, 2009
  • 13. Xie B.C., Shang L.F., Yang S.B., Yi B.W. Dynamic environmental efficiency evaluation of electric power industries: Evidence from OECD and BRIC countries. Energy 74, 147, 2014
  • 14. Zhou K.L, Yang S.L., Shen C., Ding S. Energy conservation and emission reduction of China's electric power industry. Renewable and Sustainable Energy Reviews 45, 10, 2015.
  • 15. Xie B.C., Fan Y., Qu Q.Q. Does generation form influence environmental efficiency performance? An analysis of China’s power system. Applied Energy 96, 2611, 2012.
  • 16. Zhang N., Choi Y. A comparative study of dynamic changes in CO₂ emission performance of fossil fuel power plants in China and Korea. Energy Policy 62, 324, 2013.
  • 17. Zhang N., Zhou P., Choi Y. Energy efficiency, CO₂ emission performance and technology gaps in fossil fuel electricity generation in Korea: a meta-frontier non-radial directional distance function analysis. Energy Policy 56, 653, 2013.
  • 18. Bi G.B., Song W., Zhou P., Liang L. Does environmental regulation affect energy efficiency in China's thermal power electricity generation? Empirical evidence from a slacks-based DEA model. Energy Policy 66, 537, 2014.
  • 19. Zhou G.H., Chung W., Zhang X.L. Carbon dioxide emissions and energy efficiency analysis of China's regional thermal electricity generation. Journal of Cleaner Production, 83, 173, 2014.
  • 20. Wei C., Loschel A., Liu B. Energy-saving and emission-abatement potential of Chinese coal-fired power enterprises: A non-parametric analysis. Energy Economics 49, 33, 2015.
  • 21. SIMÕES P., MARQUES R., CARVALHO P. Performance assessment of refuse collection services using robust efficiency measures. Resources, Conservation & Recycling 67 (10), 56, 2012.
  • 22. Duan N., Guo J.P., Xie B.C. Is there a difference between the energy and CO₂ emission performance for China’s thermal power industry? A bootstrapped directional distance function approach. Applied Energy 162, 1552, 2016.
  • 23. Aigner D., Lovell C., Schmidt P. Formulation and estimation of stochastic frontier production function models. Journal of Econometrics 6 (1), 21, 1977.
  • 24. Chen Z.F., Carlos P.B., Maria R.B. A Bayesian stochastic frontier analysis of Chinese fossil-fuel electricity generation companies. Energy Economics 48, 136, 2014.
  • 25. Du L., He Y., Yan J. The effects of electricity reforms on productivity and efficiency of China's fossil-fired power plants: an empirical analysis. Energy Economics 40, 804, 2013.
  • 26. Lam P.L., Shiu A. A data envelopment analysis of the efficiency of China's thermal power generation. Utilities Policy 10 (2), 75, 2001.
  • 27. Lam P.L., Shiu A. Efficiency and productivity of China's thermal power generation. Review of Industrial Organization 24 (1), 73, 2004.
  • 28. Zhou Y., Xing X.P., Fang K.N., Liang D.P., Xu C.L. Environmental efficiency analysis of power industry in China based on an entropy SBM model. Energy Policy 57, 68, 2013.
  • 29. Fan Y., Liu L.C., Wu G., Tsai HT, Wei Y.M. Changes in carbon intensity in China: empirical findings from 1980-2003. Ecological Economics 62 (3), 683, 2007.
  • 30. Wang X.P., Du L. Study on CCS investment decision-making based on real options for China's coal-fired power plants, Journal of Cleaner Production 112, 4123, 2016.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-5ff7757a-b7f4-461e-a838-f23a7223956d
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.