Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2019 | 28 | 4 |
Tytuł artykułu

Analyzing the relationship between chemical and biological-based degradation of concrete with sulfate-resisting cement

Warianty tytułu
Języki publikacji
External sulfate attack is detected on concrete construction exposed to soils, groundwater, seawater, or wastewater, and leads to serious damage to concrete elements. This paper describes an investigation of acidic corrosion caused by artificial sulphuric acid and biogenic sulphuric acid. The concrete prisms prepared from concrete-containing sulfate-resisting cement were exposed to an acid environment of different origin over a period of 3 months. The concentration of basic chemical elements such as calcium, silicon, iron, and aluminium were measured in liquid phases. Correlation analysis was used to evaluate dependencies and trends of leached-out amounts in these concentrations. Based on correlation coefficient, the intensity of dependency of the leaching trend was determined. A higher aggressiveness of sulfuric acid produced by sulfur-oxidizing bacteria was confirmed in terms of main concrete components’ leaching.
Słowa kluczowe
Opis fizyczny
  • Department of Material Engineering, Faculty of Civil Engineering, Institute of Environmental Engineering, Technical University of Kosice, Kosice, Slovakia
  • Department of Environmental Engineering, Institute of Environmental Engineering, Faculty of Civil Engineering, Technical University of Kosice, Kosice, Slovakia
  • Institute of Geotechnics, Slovak Academy of Sciences, Kosice, Slovakia
  • Department of Material Engineering, Faculty of Civil Engineering, Institute of Environmental Engineering, Technical University of Kosice, Kosice, Slovakia
  • 1. WINTER N. Understanding cement. WHD Microanalysis Consultants Ltd, The United Kingdom. 2009.
  • 2. NEVILLE A. The confused world of sulfate attack on concrete, Cem. Concr. Res. 34, 1275, 2004.
  • 3. BERTRON A., DE BELIE N. Performance of Cement-Based Materials in Aggressive Aqueous Environments. State-of-the-Art Report, RILEM TC 211 - PAE, Editors: Alexander, M.; Bertron, a.; de Belie, N., 2013.
  • 4. MONTENY J., VINCKE E., BEELDENS A., DE BELIE N., TAERWE L., VAN GEMERT D., VERSTRAETE W. Chemical, microbiological, and in situ test methods for biogenic sulfuric acid corrosion of concrete. Cem. Concr. Res. 30, 623, 2000.
  • 5. HEWAYDE E.H. Investigation on degradation of concrete sewer pipes by sulfuric acid attack. NR11978 Ph.D., The University of Western Ontario (Canada), 2005.
  • 6. O’CONNELL M., MCNALLY C., RICHARDSON M.G. Biochemical attack on concrete in wastewater applications: A state of the art review. Cement & Concrete Composites 32, 479, 2010.
  • 7. TODESCHINI S., PAPIRI S., CIAPONI C. Placement Strategies and Cumulative Effects of Wet-weather Control Practices for Intermunicipal Sewerage Systems. WaterResources Management. DOI: 1-16.10.1007/s11269-018-1964-y. 2018.
  • 8. POCHWAT K., SŁYŚ D., KORDANA S. The temporal variability of a rainfall synthetic hyetograph for the dimensioning of stormwater retention tanks in small urban catchments, Journal of Hydrology, 549, 501, 2017.
  • 9. KIDA M., ZIEMBOWICZ S., KOSZELNIK P. Removal of organochlorine pesticides (OCPs) from aqueous solutions using hydrogen peroxide, ultrasonic waves, and a hybrid process. Separation and Purification Technology 192, 457, 2018.
  • 10. BARTOSZEK L., KOSZELNIK P., GRUCA-ROKOSZ R., KIDA M. Assessment of agricultural use of the bottom sediments from eutrophic Rzeszów reservoir. Rocznik Ochrony Środowiska 17, 396, 2015.
  • 11. THISTLETHWAYTE D.K.B. The control of sulphides in sewerage systems, (ed.), Ann Arbor Science Publishers, Inc., Mich., 173, 1972.
  • 12. ISLANDER R.L., DEVINNY J.S., MANSFELD F., POSTYN A., SHIH H. Microbial ecology of crown corrosion in sewers. J. Environ. Eng. 117 (6), 751e770, 1991.
  • 13. WELLS T., MELCHERS R.E. An observation-based model for corrosion of concrete sewers under aggressive conditions, Cem. Concr. Res. 61-62, 1, 2014.
  • 14. ONDREJKA HARBULAKOVA V., ESTOKOVA A., STEVULOVA, N., FORAIOVA, K. Methods for evaluation of sewer pipes material deterioration. Journal of Engineering, Environment and Architecture 61 (3/1), 217, 2014.
  • 15. GRENGG C., MITTERMAYR F., BALDERMANN A., LEIS A., BÖTTCHER M., DIETZEL M. Concrete deterioration by bacteriogenically induced sulfuric acid attack. Eurocorr, Pisa, Italy, 2014.
  • 16. MOHAMED A.M.O., EL SAWY K.M., EL DIEB A., EL GAMAL M.M. Durability of modified Sulphur concrete in sewerage environment, Journal of Environmental Geotechnics. 2 (1), 95, ICE Publishing, 2015.
  • 17. WELLS T., MELCHERS R.E. Modelling concrete deterioration in sewers using theory and field observation, Cem. Concr. Res. 77, 82, 2015.
  • 18. GRENGG C., MITTERMAYR F., KORAIMANN G., KONRAD F., SZABO M., DEMENY A., DIETZEL M. The decisive role of acidophilic bacteria in concrete sewer networks: A new model for fast progressing microbial concrete corrosion. Com. Concr. Res. 101, 93, 2017.
  • 19. SAND W., BOCK E. Concrete corrosion in the Hamburg Sewer system. Environmental Technology Letters 5, 517, 1984.
  • 20. EHRICH S., HELARD L., LETOURNEUX R., WILLOCQ J., BOCK E. Biogenic and chemical sulfuric acid corrosion of mortars. Journal of Materials in Civil Engineering 11, 340, 1999.
  • 21. MORI T., NONAKA T., TAZAKI K., KOGA M., HIKOSAKA Y., NODA S. Interactions of nutrients, moisture and pH on microbial corrosion of concrete sewer pipes. Water research 26, 29, 1992.
  • 22. MONTENY J., VINCKE E., BEELDENS A., DE BELIE N., TAERWE L., VAN GEMERT D., VERSTRAETE W. Chemical, microbiological, and in situ test methods for biogenic sulfuric acid corrosion of concrete. Cem. Concr. Res. 30, 623, 2000.
  • 23. VINCKE E., VAN WANSEELE E., MONTENY J., BEELDENS A., DE BELIE N., TAERWE L., VAN GEMERT D., VERSTRAETE, W. Influence of polymer addition on biogenic sulfuric acid attack of concrete. International Biodeterioration & Biodegradation 49, 283, 2002.
  • 24. JIANG G., WIGHTMAN E., DONOSE B.C., YUAN Z., BOND P.L., KELLER J. The role of sufide induced corrosion of sewer concrete, Water research 49, 166, 2014.
  • 25. GRENGG C., MITTERMAYR F., BALDERMANN A., BOTTCHER M.E., LEIS A., KORAIMANN G., GRUNERT P., DIETZEL M. Microbiologically induced concrete corrosion: A case study from a combined sewer network, Cem. Concr. Res. 77, 16, 2015.
  • 26. PIETRUCHA-URBANIK K. Multidimensional comparative analysis of water infrastructures differentiation, Conference on Environmental Engineering IV, Lublin, Poland, 29, 2013.
  • 27. KHADEMI A.G., KALA SAR H.I. Comparison of sulphur concrete, cement concrete and cement-sulfur concrete and their properties and application. Current World Environment 10, 201, 2015.
  • 28. CIAK N., HARASYMIUK J. Sulphur concrete’s technology and its application to the building industry. Technical Sciences 16 (4), 323, 2013.
  • 29. ONDREJKA HARBULAKOVA V., ESTOKOVA A., KOVALCIKOVA M. Correlation analysis between different types of corrosion of concrete containing sulfate resisting cement. Environments 4 (3), 1, 2017.
  • 30. WAKSMAN S. A., JOFFE I. S., J. Bacteriol., 7 (2), 239, 1922.
  • 31. KREYSZIG E. Advanced Engineering Mathematics. 10th edition, John Wiley and sons Eds, United States of America, 2011.
  • 32. BERNDT M.L. Evaluation of coatings, mortars and mix design for protection of concrete against sulphur oxidising bacteria. Constr. Build. Mater. 25 (10), 3893, DOI: 0.1016/j. conbuildmat.2011.04.014., 2011.
  • 33. ONDREJKA HARBULAKOVA V., ESTOKOVA A., LUPTAKOVA A. Study of dependencies between concrete deterioration parameters of fly ash-based specimens, In Advances in Intelligent Systems and Computing: Dependability Engineering and Complex Systems. Zamojski, W., Mazurkiewicz, J., Sugier, J., Walkowiak, T., Kacprzyk, J. Eds.; Wroclaw: Springer International Publishing, 470, 229, 2016.
  • 34. ESTOKOVA A., KOVALCIKOVA M., LUPTAKOVA A., PRASCAKOVA M. Testing silica fume-based concrete composites under chemical and microbiological sulfate attacks. Materials 9, 324, 2016.
  • 35. MALOLEPSY J., GRABOWSKA E. Sulfate attack resistance of cement with zeolite additive, Procedia Engineering 108, 170, 2015.
  • 36. ROZIÈRE E., LOUKILI A., EL HACHEM R., GRONDIN, F. Durability of concrete exposed to leaching and external sulfate attacks. Cem. Concr. Res. 39, 1188, DOI: 10.1016/j. cemconres.2009.07.021, 2009.
  • 37. ZHANG M.H., CHEN J.K., LV Y.F., WANG D.J., YE J. Study on the expansion of concrete under attack of sulfate and sulfate-chloride ions, Constr. Build. Mater. 39, 26, 2013.
Typ dokumentu
Identyfikator YADDA
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.