PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2011 | 67 | 12 |

Tytuł artykułu

Caenorhabditis elegans - dogodny nicień do badania przeciwpasożytniczej aktywności saponin roślinnych

Warianty tytułu

EN
Caenorhabditis elegans nematode - convenient for the study of anthelmintic activity in plant saponins

Języki publikacji

PL

Abstrakty

EN
Widely introduced parasitic control programs rely heavily on the use of synthetic or semi-synthetic antiparasitic compounds. The ineffectiveness of these therapies and growing drug resistance of nematodes leads researchers to search for new alternative methods to combat parasites. One proposal is to use the medicinal properties of herbs that have been used in medicine and veterinary practice for a longer period. The research of activity of plant extracts and their fractions are increasingly important to develop therapies that improve the health of humans and also animals. Anthelmintic properties of plant compounds may be used in an environment where invasive forms of parasites develop. At this stage different compounds can affect the growth and development of parasites, such as inhibiting the molting process. Knowledge of the development of nematodes is still incomplete. On account of the simple structure and transparent body of the nematode, Caenorhabditis elegans is a model species to study many phenomena. Development of the nematode (parasitic and free-living) is strictly programmed. Apoptosis is one of the major mechanisms involved in nematode development. The main apoptotic pathway proteins are CED-3, CED-4 (pro-apoptotic) and CED-9 (anti-apoptotic). Changes in the levels of these proteins may alter the course of organogenesis leading to adverse phenotypic effects. Saponins are compounds commonly occurring in the plant kingdom (both in edible plants and herbs). The mechanism of the action of triterpenoidsaponins per cell is not fully understood. They show numerous properties such as immunomodulatory, antiviral, cytotoxic, or antitumor. Particularly derivatives of oleanolic acid and ursolic acid exhibit a variety of pharmacological properties without toxic side-effects. Due to their characteristics active plant compounds, mainly derivatives of pentacyclictriterpenoids, are a potential source of anticancer, cytotoxic and anthelmintic new generation substances. These may affect the development of the parasite to regulate apoptosis. The discovery of the manner in which saponins are involved in apoptosis can be the first step toward the development a new drug for parasite diseases.

Wydawca

-

Rocznik

Tom

67

Numer

12

Opis fizyczny

s.829-834,bibliogr.

Twórcy

autor
  • Zakład Parazytologii Instytutu Zoologii, Wydział Biologii, Uniwersytet Warszawski, ul.Miecznikowa 1, 02-096 Warszawa

Bibliografia

  • 1.Aballay, Ausubel M. F.: Programmed cell death mediated by ced-3 and ced-4 protects Caenorhabditiselegans from Salmonella typimurium - mediated killing. PNAS 2001, 5, 2735-2739.
  • 2.Abe F., Yamauchi T., Nagao T., Kinjo J., Okabe H., Higo H., Akahane H.: Ursolic acid as a trypanocidal constituent in rosemary. Biol. Pharm. Bull. 2002, 25, 1485-1487.
  • 3.Barton D.: Antibiotic use in animal feed and its impact on human health. Nutr. Res. Rev. 2000, 13, 279-299.
  • 4.Bose J., Gruber A., Helming L., Schiebe S., Wegener I., Hafner M., Beales M., Kontgen F., Lengeling A.: The phosphatidylserine receptor has essential functions during embryogenesis but not in apoptotic cell removal. J. Biol. 2004, 3, 15.
  • 5.Cellerino A., Bahr M., Isenmann S.: Apoptosis in the developing visual system. Cell Tissue Res. 2000, 301, 53-69.
  • 6.Dat T., Lee S., Cai F., Shen G., Kim H.: Oleananetriterpenoids with inhibitory activity against NFAT transcription factor from Liquidambar formosana. Biol. Pharm. Bull. 2004, 27, 426-428.
  • 7.Doligalska M., Jóźwicka K., Kiersnowska M., Mroczek A., Paczkowski C., Janiszowska W.: Triterpenoidsaponins affect the function of P-glycoprotein and reduce the survival of the free-living stages of Heligmosomoidesbakeri. Vet. Parasitol. 2011, 179, 144-151.
  • 8.Eguale T., Giday M.: In vitro anthelmintic activity of three medicinal plants agains Haemonchuscontortus. Int. J. Green Pharm. 2009, 3, 29-34.
  • 9.Francis G., Kerem Z., Makkar S. P. H., Becker K.: The biological action of saponins in an animal system: a review. Br. J. Nutr. 2002, 88, 587-605.
  • 10.Fraser A. G.: Programmed cell death in C. elegans. Cancer Metastasis Rev. 1999, 18, 285-294.
  • 11.Haddad M., Laurens V., Lacaille-Dubois M.: Induction of apoptosis in a leukemia cell line by triterpenesaponins from Albiziaadianthifolia. Bioorg. Med. Chem. 2004, 12, 4725-4734.
  • 12.Han T., Li J., Huang F., Yu G., Fang B.: Tritrpenoidsaponins from Anemone flaccida induce apoptosis activity in HeLa cells. J. Asian. Nat. Prod. Res. 2009, 11, 122-127.
  • 13.Haridas V., Higuchi M., Jayatilake G., Bailey D., Mujoo K., Blake M., Arntzen Ch., Gutterman J.: Avicins: triterpenoidsaponins from Acacia victoriae (Bentham) induce apoptosis by mitochondrial perturbation. PNAS 2001, 98, 5821-5826.
  • 14.Hengartner M. O., Ellis R. E., Horvitz H. R.: Caenorhabditiselegans gene ced-9 protects cells from programmed cell death. Nature 1992, 356, 494-499.
  • 15.Horvitz H. R., Shaham S., Hengartner M. O.: The genetics of programmed cell death in the nematode Caenorhabditiselegans. Nature 1994, 385, 653-656.
  • 16.Igaki T., Miura M.: Role of Bcl-2 family members in invertebrates. Biochim. Biophys. Acta. 2004, 1644, 73-81.
  • 17.Jacobson M.: Programed cell death: a missing link is found. Cell Biol. 1997, 12, 467-469.
  • 18.Jacobson M., Weil M., Raff C. M.: Programmed cell death in animal development. Cell 1997, 88, 347-354.
  • 19.Kanuka H., Hisahara S., Sawamoto K., Shoji S., Okano S., Miura M.: Proapoptotic activity of Caenorhabditiselegans CED-4 protein in Drosophila: Implicated mechanisms for caspase activation. Cell Biol. 1999, 96, 145-150.
  • 20.Kerboeuf D., Blackhall W., Kaminskyc T., von Samson-Himmelstjerna G.: P-glycoprotein in helminthes: function and perspectives for anthelmintic treatment and reversal of resistance. Int. J. Antimicrob. Agents. 2003, 22, 332-334.
  • 21.Kinchen J.: A model to die for: signaling to apoptotic cell removal in worm, fly and mouse. Apoptosis 2010, 15, 998-1006.
  • 22.Kinchen M., Ravichandran S.: Journey to the grave: signaling events regulating removal of apoptotic cells. J. Cell Sci. 2007, 120, 2143-2149.
  • 23.Li P., Nijhawan D., Wang X.: Mitochondrial activation of apoptosis. Cell. 2004, 116, S57-S61.
  • 24.Mangahas M., Yu X., Miller G., Zhou Z.: The small GTPase Rab2 functions in the removal of apoptotic cells in Caenorhabditiselegans. J. Cell Biol. 2008, 180, 357-373.
  • 25.Maślińska D.: Programowana śmierć komórki (apoptoza) w procesie zapalnym. Nowa Med. 1999, 4, 12-17.
  • 26.Meier P., Finch A., Evan G.: Apoptosis in development. Nature 2000, 407, 796-801.
  • 27.Muley B., Khadabadi S., Banarase N.: Phytochemical constituents and pharmacological activities of Calendula officinalis Linn (Asteraceae): A Review. Trop. J. Pharm. Res. 2009, 8, 455-465.
  • 28.Pacheco-Soares C., de Souza W.: Localization of saponin-sterol complexes and lectin-binding sites during interaction of Toxoplasma gondii with host cell. Parasitol. Res. 2000, 86, 529-536.
  • 29.Petit P.: Fengreek steroid saponins, food intake and plasma lipids. Steroids. 1995, 60, 674-680.
  • 30.Rochfort S., Parker A., Dunshea F.: Plant bioactives for ruminant health and productivity. Phytochemistry 2008, 69, 299-322.
  • 31.Savill J., Gregory Ch., Haslett Ch.: Eat me or die. Science 2003, 302, 1516-1517.
  • 32.Schierenberg E.: Developmental strategies during early embriogenesis of Caenorhabditis elegans. J. Embryol. 1986, 97, 31-44.
  • 33.Shyu M., Kao T., Yen G.: Oleanolic acid and ursolic acid induce apoptosis in HuH7 Human hepatocellular Carcinoma cells through a mitochondrial depended pathway and downregulation of XIAP. J. Argic. Food Chem. 2010, 58, 6110-6118.
  • 34.Spector M., Desnoyers S., Hoeppner D., Hengartner M.: Interaction between the C. elegans cell-death regulators CED-9 and CED-4. Nature 1997, 385, 653-656.
  • 35.Stear M., Doligalska M., Donskow-Schmelter K.: Alternatives to anthelmintics for control of nematodes in livestock. Parasitology 2007, 134, 139-151.
  • 36.Szakiel A., Ruszkowski D., Grudniak A., Kurek A., Wolska I. K., Doligalska M., Janiszowska W.: Antibacterial and antiparasiticactivaty activity of oleanolic acid and its glycosides isolated from marigold (Calendula officinalis). Planta Med. 2008, 74, 1709-1715.
  • 37.Twomey C., McCarthy J.: Pathways of apoptosis and importance in development. J. Cell. Mol. Med. 2005, 9, 345-359.
  • 38.Urban J., Kokoska L., Matejkova J.: In vitro anthelmintic effets of medicinal plants used in Czech Republic. Pharm. Biol. 2008, 46, 808-813.
  • 39.Voronov A. D., Panchin V. Y.: Cell lineage in marine nematode Enoplus brevis. Development 1998, 125, 143-150.
  • 40.Wiegner O., Schierenberg E.: Regulative development in nematode embryo: a hierarchy of cell fate trasformations. Dev. Biol. 1999, 215, 1-12.
  • 41.Wu C., Horvitz R.: The C. elegans cell corpse engulfment gene CED-7 encodes a protein similar to ABC transporters. Cell 1998, 93, 951-960.
  • 42.Yan N., Gu L., Kokel D., Chai J., Wenyu H., Aidong C., Lin X.: Structural, Biochemical, and Functional Analyses of CED-9 Recognition by the Proapoptotic Proteins EGL-1 and CED-4. Mol. Cell. 2004, 15, 999-1006.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-5fcb28e9-0e73-4acb-bf9c-834b75bd6b64
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.