PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2010 | 70 |
Tytuł artykułu

Introduction to the Hilbert-Huang transform

Treść / Zawartość
Warianty tytułu
PL
Wprowadzenie do transformaty Hilbert-Huang
Języki publikacji
EN
Abstrakty
EN
Introduction to the Hilbert-Huang transform. The Hilbert-Huang transform (HHT) is an empirically based data-analysis method. Its basis of expansion is adaptive, so that it can produce physically meaningful representations of data from nonlinear and non-stationary processes. The advantage of being adaptive has a price: the difficulty of laying a firm theoretical foundation. This paper is an introduction to the basic method, which is followed by brief descriptions of the recent developments relating to the normalized Hilbert transform, a confidence limit for the Hilbert spectrum, and a statistical significance test for the intrinsic mode function (IMF). These problems include the general method of adaptive data-analysis, the identification methods of nonlinear systems, the prediction problems in nonstationary processes, which is intimately related to the end effects in the empirical mode decomposition (EMD), the spline problems, which center on finding the best spline implementation for the HHT, the convergence of EMD, and two-dimensional EMD, the optimization problem or the best IMF selection and the uniqueness of the EMD decomposition.
PL
Wprowadzenie do transformaty Hilbert-Huang. W niniejszym artykule opisano transformatę Hilbert-Huang (HHT) jako empiryczną metodę analizy danych. Jej zastosowanie do wielkości fizycznych z procesów nieliniowych i niestacjonarnych.
Słowa kluczowe
Wydawca
-
Rocznik
Tom
70
Opis fizyczny
p.290-293,ref.
Twórcy
autor
  • Faculty of Wood Technology, Warsaw University of Life Science-SGGW, Nowoursynowska 159, 02-776 Warsaw, Poland
  • Faculty of Wood Technology, Warsaw University of Life Science-SGGW, Nowoursynowska 159, 02-776 Warsaw, Poland
Bibliografia
  • 1. GRÖCHENIG K. 2001: Foundations of Time-Frequency Analysis. Birkhäuser, 359 pp.
  • 2. TONG H. 1990: Nonlinear Time Series Analysis. Oxford University Press, 564 pp.
  • 3. DIKS C. 1999: Nonlinear Time Series Analysis: Methods and Applications. World Scientific Press, 180 pp.
  • 4. KANTZ H., SCHREIBER T. 1999: Nonlinear Time Series Analysis. Cambridge University Press, 304 pp.
  • 5. WINDROWS B., STEARNS S. D. 1985: Adaptive Signal Processing. Prentice Hall, 474 pp.
  • 6. HUANG N. E., LONG S. R., SHEN Z. 1996: The mechanism for frequency downshift in nonlinear wave evolution. Adv. Appl. Mech., 32, 59-111.
  • 7. HUANG N. E., SHEN Z., LONG S. R., WU M. C., SHIH H. H., ZHENG Q., YEN N. C., TUNG C. C., LIU H. H. 1998: The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis. Proc. R. Soc. London, Ser. A, 454, 903-995.
  • 8. HUANG N. E., SHEN Z., LONG S. R. 1999: A new view of water waves - The Hilbert spectrum. Annu. Rev. Fluid Mech., 31, 417-457.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.agro-5f78502d-a057-4d0e-a9ba-29b87cec0551
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.