PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2019 | 41 | 09 |

Tytuł artykułu

Phospholipase C activity is increased in wheat seedlings inoculated with the rhizobacteria Azospirillum brasilense Sp245

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
The present study aimed to determine phospholipase C (PLC) activation status during changes promoted by Azospirillum brasilense Sp245 in wheat seedlings. Germinated Triticum aestivum seeds by 3 days were inoculated with different A. brasilense concentrations (1 × 10⁶ and 4 × 10⁶ CFU/mL) and PLC enzyme activity assayed at different times. Root and leaf length, as well as total fresh weight were assessed as growth parameters; moreover, changes in root morphology were analyzed. PLC activity was measured by molybdate assay. Neomycin and LaCI₃ treatments verified PLC- and/or Ca²⁺ -dependent effects on inoculated wheat, respectively. A. brasilense increased PLC activity 15–30 min after inoculation. Ca²⁺ -channel blocker LaCI₃ decreased PLC activity, and activity did not recover with A. brasilense. The A. brasilense mutant FAJ009, impaired in auxin production, showed decreased PLC activity versus wild type. PLC activity was inhibited by neomycin (PLC inhibitor), concomitant with a decrease in total fresh weight. Exogenous addition of diacylglycerol (DAG) and inositol-1,4,5-trisphosphate (IP3), secondary messengers produced by the activity of PLC, increased root hair length. The putative role of PLC enzyme activity in morphological changes promoted by A. brasilense in wheat seedlings is discussed.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

41

Numer

09

Opis fizyczny

Article 152 [8p.], fig.,ref.

Twórcy

  • Instituto de Investigaciones Químico Biologicas, Universidad Michoacana de San Nicolas de Hidalgo, Ciudad Universitaria, Edif. A1, CP 58040 Morelia, Michoacan, Mexico
  • Instituto de Investigaciones Químico Biologicas, Universidad Michoacana de San Nicolas de Hidalgo, Ciudad Universitaria, Edif. A1, CP 58040 Morelia, Michoacan, Mexico

Bibliografia

  • Andreeva Z, Barton D, Armour WJ, Li MY, Liao LF, McKellar HL, Pethybridge KA, Marc J (2010) Inhibition of phospholipase C disrupts cytoskeletal organization and gravitropic growth in Arabidopsis roots. Plant 232:1263–1279. https://doi.org/10.1007/s00425-010-1256-0
  • Baldani VLD, de Alvarez MA MAB, Baldani JI, Dobereiner JD (1986) Establishment of inoculated Azospirillum spp. in the rhizosphere and in roots of field grown wheat and sorghum. Plant Soil 90:35–46. https://doi.org/10.1007/BF02277385
  • Bashan Y, de-Bashan L (2010) How the plant growth-promoting bacterium Azospirillum promotes plant growth. A critical assessment. Adv Agron 108:77–136. https://doi.org/10.1016/S0065-2113(10)08002-8
  • Bashan Y, Holguin G, de-Bashan LE (2004) Azospirillum–plant relationships: physiological, molecular, agricultural, and environmental advances (1997–2003). Can J Microbiol 50:521–577. https://doi.org/10.1139/w04-035
  • Berridge MJ (1993) Inositol trisphosphate and calcium signaling. Nature 361:315–325. https://doi.org/10.1038/361315a0
  • Canonne J, Froidure-Nicolas S, Rivas S (2011) Phospholipases in action during plant defense signaling. Plant Signal Behav 6:13–18. https://doi.org/10.4161/psb.6.1.14037
  • Cassan F, Diaz-Zorita M (2016) Azospirillum sp. in current agriculture: from the laboratory to the field. Soil Biol Biochem 103:117–130. https://doi.org/10.1016/j.soilbio.2016.08.020
  • Chapman KD (1998) Phospholipase activity during plant growth and development and in response to environmental stress. Trends Plant Sci 3:411–426. https://doi.org/10.1016/S1360-1385(98)01326-0
  • Chen G, Snyder CL, Greer MS, Weselake RJ (2011) Biology and biochemistry of plant phospholipases. Crit Rev Plant Sci 30:239–258. https://doi.org/10.1080/07352689.2011.572033
  • Dowd PE, Coursol S, Skirpan AL, Kao TH, Gilroy S (2006) Petunia phospholipase c1 is involved in pollen tube growth. Plant Cell 18:1438–1453. https://doi.org/10.1105/tpc.106.041582
  • Durban MA, Bornscheuer UT (2007) An improved assay for the determination of phospholipase C activity. Eur J Lipid Sci Technol 109:469–473. https://doi.org/10.1002/ejlt.200700027
  • Gabev E, Kasianowicz J, Abbott T, McLaughlin S (1989) Binding of neomycin to phosphatidylinositol 4,5-bisphosphate (PIP 2). Biochim Biophys Acta 979:105–112. https://doi.org/10.1016/0005-2736(89)90529-4
  • Hirayama T, Ohto C, Mizoguchi T, Shinozaki K (1995) A gene encoding a phosphatidylinositol-specific phospholipase C is induced by dehydration and salt stress in Arabidopsis thaliana. Proc Natl Acad Sci USA 92:3903–3907
  • Hong Y, Zhao J, Guo L, Kim S-C, Deng X, Wang G, Zhang G, Li M, Wang X (2016) Plant phospholipases D and C and their diverse functions in stress responses. Prog Lipid Res 62:55–74. https://doi.org/10.1016/j.plipres.2016.01.002
  • Kanehara K, Yu C-Y, Cho Y, Cheong W-F, Torta F, Shui G, Wenk MR, Nakamura Y (2015) Arabidopsis AtPLC2 is a primary phosphoinositide-specific phospholipase C in phosphoinositide metabolism and the endoplasmic reticulum stress response. PLoS Genet 11:e1005511. https://doi.org/10.1371/journal.pgen.1005511
  • Khodakovskaya M, Sword C, Wu Q, Perera IY, Boss WF, Brown CS, Sederoff HW (2010) Increasing inositol (1,4,5)-trisphosphate metabolism affects drought tolerance, carbohydrate metabolism and phosphate-sensitive biomass increases in tomato. Plant Biotechnol J 8:170–183. https://doi.org/10.1111/j.1467-7652.2009.00472.x
  • Komis G, Galatis B, Quader H, Galanopoulou D, Apostolakos P (2008) Phospholipase C signaling involvement in macrotubule assembly and activation of the mechanism regulating protoplast volume in plasmolyzed root cells of Triticum turgidum. New Phytol 178:267–282. https://doi.org/10.1111/j.1469-8137.2007.02363.x
  • Mariani ME, Madoery RR, Fidelio GD (2015) Auxins action on Glycine max secretory phospholipase A2 is mediated by the interfacial properties imposed by the phytohormones. Chem Phys Lipids 189:1–6. https://doi.org/10.1016/j.chemphyslip.2015.05.003
  • Ohanian J, Ohanian V (2001) Lipid second messenger regulation: the role of diacylglycerol kinases and their relevance to hypertension. J Hum Hypertens 15:93–98. https://doi.org/10.1038/sj.jhh.1001139
  • Pereyra CM, Ramella NA, Pereyra MA, Barassi CA, Creus CM (2010) Changes in cucumber hypocotyl cell wall dynamics caused by Azospirillum brasilense inoculation. Plant Physiol Biochem 48:62–69. https://doi.org/10.1016/j.plaphy.2009.10.001
  • Peters C, Kim S-C, Devaiah S, Li M, Wang X (2014) Non-specific phospholipase C5 and diacylglycerol promote lateral root development under mild salt stress in Arabidopsis. Plant Cell Environ 37:2002–2013. https://doi.org/10.1111/pce.12334
  • Pokotylo I, Pejchar P, Potocky M, Kocourkova D, Krckova Z, Ruelland E, Kravets V, Martinec J (2013) The plant non-specific phospholipase C gene family. Novel competitors in lipid signaling. Prog Lipid Res 52:62–79. https://doi.org/10.1016/j.plipres.2012.09.001
  • Pokotylo I, Kolesnikov Y, Kravets V, Zachowski A, Ruelland E (2014) Plant phosphoinositide-dependent phospholipases C: variations around a canonical theme. Biochimie 96:144–157. https://doi.org/10.1016/j.biochi.2013.07.004
  • Profotová B, Burketová L, Novotná Z, Martinec J, Valentová O (2006) Involvement of phospholipases C and D in early response to SAR and ISR inducers in Brassica napus plants. Plant Physiol Biochem 44:143–151. https://doi.org/10.1016/j.plaphy.2006.02.003
  • Scherer GFE (1995) Activation of phospholipase A2 by auxin and mastoparan in hypocotyl segments from zucchini and sunflower. J Plant Physiol 145:483–490. https://doi.org/10.1016/S0176-1617(11)81775-X
  • Singh A, Kanwar P, Pandey A, Tyagi AK, Sopory SK, Kapoor S, Pandey GK (2013) Comprehensive genomic analysis and expression profiling of phospholipase C gene family during abiotic stresses and development in rice. PLoS One 8:e62494. https://doi.org/10.1371/journal.pone.0062494
  • Spaepen S, Dobbelaere S, Croonenborghs A, Vanderleyden J (2008) Effects of Azospirillum brasilense indole-3-acetic acid production on inoculated wheat plants. Plant Soil 312:15–23. https://doi.org/10.1007/s11104-008-9560-1
  • Steenhoudt O, Vanderleyden J (2000) Azospirillum, a free-living nitrogen-fixing bacterium closely associated with grasses: genetic, biochemical and ecological aspects. FEMS Microbiol Rev 24:487–506. https://doi.org/10.1111/j.1574-6976.2000.tb00552.x
  • Tsukagoshi H (2012) Defective root growth triggered by oxidative stress is controlled through the expression of cell cycle-related genes. Plant Sci 197:30–39. https://doi.org/10.1016/j.plantsci.2012.08.011
  • Tuteja N, Sopory SK (2008) Plant signaling in stress: G-protein coupled receptors, heterotrimeric G-proteins and signal coupling via phospholipases. Plant Signal Behav 3:79–86
  • Vande Broek A, Lambrecht M, Eggermont K, Vanderleyden J (1999) Auxins upregulate expression of the indole-3-pyruvate decarboxylase gene in Azospirillum brasilense. J Bacteriol 181:1338–1342
  • Vermeer JEM, van Wijk R, Goedhart G, Geldner N, Chory J, Gadella TWJ Jr, Munnik T (2017) In vivo imaging of diacylglycerol at the cytoplasmic leaflet of plant membranes. Plant Cell Physiol 58:1196–1207. https://doi.org/10.1093/pcp/pcx012
  • Vossen JH, Abd-El-Haliem A, Fradin EF, Van Den Berg G, Ekengren SK, Meijer HJG, Seifi A, Bai Y, Ten Have A, Munnik T, Thomma BPHJ, Joosten MHAJ (2010) Identification of tomato phosphatidylinositol-specific phospholipase-C (PI-PLC) family members and the role of PLC4 and PLC6 in HR and disease resistance. Plant J 62:224–239. https://doi.org/10.1111/j.1365-313X.2010.04136.x
  • Wang X (2001) Plant phospholipases. Annu Rev Plant Physiol Plant Mol Biol 52:211–231. https://doi.org/10.1146/annurev.arplant.52.1.211
  • Wang X (2004) Lipid signaling. Curr Opin Plant Biol 7:329–336. https://doi.org/10.1016/j.pbi.2004.03.012
  • Wimalasekera R, Pejchar P, Holk A, Martinec J, Scherer GF (2010) Plant phosphatidylcholine-hydrolyzing phospholipases C NPC3 and NPC4 with roles in root development and brassinolide signaling in Arabidopsis thaliana. Mol Plant 3:610–625. https://doi.org/10.1093/mp/ssq005

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-5f254bea-0c9b-482a-a785-c6addb99c2a2
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.