PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2018 | 27 | 4 |

Tytuł artykułu

Analysis and assessment of biological treatment processes in a small-scale wastewater treatment plant

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
With stricter requirements for wastewater treatment, small₋scale individual wastewater treatment plants can provide a financially attractive alternative to a sever connection in locations far from the existing sewer network. Systems operating under the basis of active sludge are considered advanced, and their producers declare high levels of wastewater treatment not only according to BOD, but also under biogenic materials. However, there are hardly any data on how small₋scale individual household wastewater treatment facilities operate. This article presents an analysis of the main parameters of wastewater biologically treated in three small₋scale household wastewater treatment plants (which operate under the basis of active sludge), namely TSS, COD, BOD₇, Nt, NO₃₋N, NH₄₋N, Pt, and PO₄₋P concentrations. The research lasted for 5.5 months during a cold period. According to TSS, COD, and BOD₇ concentrations in effluent, the wastewater treatment level in the study plants was good. The concentrations of these substances in effluent (TSS<10 mg/L, COD<98 mg/L, BOD₇<20 mg/L) were lower than requirements for treated water. However, NH₄₋N in the effluent in winter increased up to 6-7 mg/L and to 26 mg/L. The concentrations of Nt and Pt in treated wastewater exceeded EU requirements for water released from wastewater treatment facilities. PO₄₋P removal, in many cases, was ineffective or did not take place at all.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

27

Numer

4

Opis fizyczny

p.1629-1637,fig.,ref.

Twórcy

  • Department of Environmental Protection and Water Engineering, Faculty of Environmental Engineering, Vilnius Gediminas Technical University, Vilnius, Lithuania
  • Department of Environmental Protection and Water Engineering, Faculty of Environmental Engineering, Vilnius Gediminas Technical University, Vilnius, Lithuania

Bibliografia

  • 1. OAKLEY S.M., GOLD A.J., OCZKOWSKI A.J. Nitrogen control through decentralized wastewater treatment: Process performance and alternative management strategies. Ecol Eng. 36, 1520, 2010.
  • 2. AUGUST & KO. 2013. Available online: <http://www.august.lt/lt/produktai/biologiniai-nuoteku-valymoirenginiai/mazi-nvi-at6-at50>. Sited 10 January 2015.
  • 3. SMALL WASTE WATER TREATMENT PLANT AT. 2013. Available online: https://www.youtube.com/watch?v=uVczI-QgNkw. Sited 10 January 2017.
  • 4. BUDRECKAS A. Leaving behind the time of lithuanian “August ir Ko” biological wastewater treatment plant technology [in Lithuanian language]. Water Management. Information publication of Lithuanian Water Association (in lithuanian language: Vandentvarka. Lietuvos vandens asociacijos informacinis leidinys). 45, 16, 2014.
  • 5. ENGIN G.O., DEMIR I. Cost analysis of alternative methods for wastewater handling in small communities. J Environ Manage. 79, 357, 2006.
  • 6. ABEGGLEN C., OSPELT M., SIEGRIST H. Biological nutrient removal in a small-scale MBR treating household wastewater. Water Res. 42, 338, 2008.
  • 7. MOELANTS N., ET AL. Field performance assessment of onsite individual wastewater treatment systems. Water Sci Technol. 58 (1), 1, 2008.
  • 8. LOWE K.S., ET AL. Field evaluation of the performance of engineered on-site wastewater treatment units. J Hydrol Eng. 13 (8), 735, 2008.
  • 9. MATULOVA Z., HLAVINEK P., DRTIL M. One-year operation of single household membrane bioreactor plant. Water Sci Technol. 61 (1), 217, 2010.
  • 10. VERMA M., ET AL. Aerobic Biofiltration Processes – Advances in Wastewater Treatment. Pract Period Hazard, Tox, and Radioact Waste Manage. 10 (4), 364, 2006.
  • 11. SOVIK A.K., KLOVE B. Phosphorus retention processes in shell sand filter systems treating municipal wastewater. Ecol Eng. 25, 68, 2005.
  • 12. VAN DER AKKER B., ET AL. Application of high rate nitrifying trickling filters to remove low concentrations of ammonia from reclaimed municipal wastewater. Water Sci Technol. 61 (10), 2425, 2010.
  • 13. ROBERTSON W.D. Nitrate removal rates in woodchip media of varying age. Ecol Eng. 36, 1581, 2010.
  • 14. ALONSO Á., CAMARG J. Ecological and toxicological effects of inorganic nitrogen pollution in aquatic ecosystems: A global assessment. Environ International. 32 (6), 831, 2006.
  • 15. MOORMAN T.B., ET AL. Denitrification activity, wood loss and N₂O emissions over nine years from a wood chip bioreactor. Ecol Eng. 36, 15674, 2010.
  • 16. AIVASIDIS A., KAPAGIANNIDIS A.G., ZAFIRIADIS I. Biotechnological Methods for Nutrient Removal from Wastewater with Emphasis on the Denitrifying Phosphorus Removal Process. Reference Module in Earth Systems and Environmental Sciences, from Comprehensive Biotechnology (Second Edition). 6, 341, 2011.
  • 17. LI G., ET AL. Denitrification with corncob as carbon source and biofilm carriers. Water Sci Techn. 65 (7), 1238, 2012.
  • 18. ALI I., GUPTA V.K. Wastewater Treatment by Biological Methods. Environ Water. Advances in Treatment, Remediation and Recycling. 179, 2013.
  • 19. Regulation on Wastewater Management (in Lithuanian language: Nuotekų tvarkymo reglamentas). D1-236. Vilnius, 2006 [In Lithuanian].
  • 20. LAND 21-01. Environmental Rules of household water filtration equipment’s for installation in natural conditions (in Lithuanian: Aplinkosauginės buitinių nuotekų filtravimo įrenginių įrengimo gamtinėmis sąlygomis taisyklės). State News (in lithuanian language: Valstybės žinios). 2001–05–16; 41–1438:8, 2001 [In Lithuanian].
  • 21. NASR F.A., MIKHAEIL B. Treatment of domestic wastewater using modified septic tank. Desalination Water Treat. 56, 2073, 2015.
  • 22. MOUSSAVI G., KAZEMBEIGI F., FARZADKIA M. Performance of a pilot scale up-flow septic tank foro n-site decentralized treatment of residential wastewater. Process Saf Environ. 88, 47, 2010.
  • 23. European Parliament – EP. Urban wastewater treatment. European Directive 1991/271/EEC of 1991.05.21. Brussels. 1991.
  • 24. MAUNOIR S., PHILIP H., RAMBAUD A. Small wastewater treatment plants in mountain areas: combination of septic tank and biological filter. Water Sci Technol. 56 (10), 65, 2007.
  • 25. DUCEY T.F., ET AL. Characterization of a microbial community capable of nitrification at cold temperature. Bioresource Technol. 101, 491, 2010.
  • 26. ALMSTRAND R., LYDMARK P., LINDGREN P.E., SORENSSON F., HERMANSSON M. Dynamics of specific ammonia-oxidizing bacterial populations and nitrification in response to controlled shifts of ammonium concentrations in wastewater. Appl Microbiol Biotechnol. 97 (5), 2183, 2013.
  • 27. SAJUNI N.R., AHMAD A.L., VADIVELU V.M. Effect of filter media characteristics, pH and temperature on the ammonia removal in the wastewater. J Appl Sci. 10 (12), 1146, 2010.
  • 28. LYDMARK P., ALMSTRAND R., SAMUELSSON K., MATTSSON A., SORENSSON F., LINDGREN P.E., HERMANSSON M. Effects of environmental conditions on the nitrifying population dynamics in a pilot wastewater treatment plant. Environ Microbiol. 9 (9), 2220, 2007.
  • 29. EIKELBOOM D.H. Process Control of Activated Sludge Plants by Microscopic Investigation. 156, 2000.
  • 30. AL-JAMAL W., MAHMOUND N. Community onsite treatment of cold strong sewage in a UASB-septic tank. Bioresource Technol. 100, 1061, 2009.
  • 31. Phosphorus and Water. 2014. Available online: http://water.usgs.gov/edu/phosphorus.html. Sited 2 January 2016.
  • 32. ABBAS H., SEIF H., MOURSI A. Effect of hydraulic retention time on the activated sludge system. Sixth International Water Technology Conference (IWTC), Alexandria, Egypt. 277, 2001.
  • 33. SCHIPPER L.A., CAMERON S.G., WARNEKE S. Nitrate removal from three different effluents using large-scale denitrification beds. Ecol Eng. 36, 1552, 2010.
  • 34. HARADA H., DONG N.T., MATSUI, S. A measure for provisional-and-urgent sanitary improvement in developing countries: septic-tank performance improvement. Water Sci Technol. 58 (6), 1305, 2008.
  • 35. MASSOUD M.A., TARHINI A., NASR J.A. Decentralized approaches to wastewater treatment and management: Applicability in developing countries. J Environ Manage. 90, 652, 2009.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-5f22bb24-8e32-4266-a48d-99faf187c70b
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.