PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2019 | 41 | 12 |

Tytuł artykułu

Structural organization, thermal stability, and excitation energy utilization of pea thylakoid membranes adapted to low light conditions

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
While the morphological changes in the leaves of low light adapted higher plants are well established, the architecture and lateral arrangement of the thylakoid membrane from plants grown under low light conditions are still not well explored. In the present work we compare the structural organization and thermal stability of thylakoid membranes isolated from pea plants adapted to moderate and low light conditions, and relate the observed structural changes to the functional capacity of the photosynthetic apparatus. In line with earlier reports we confirm that low light induces decrease in the chlorophyll a/b ratio and enlargement of grana membrane regions. Importantly, for the first time we demonstrate a significant thermal instability of low-light thylakoids that are reflected in lower heat needed to disassemble the lateral order of the photosynthetic complexes, as well as for the destabilization of the trimers and monomers of the major light-harvesting complex of photosystem II. Data suggest that this important regulatory complex might adopt different conformation at moderate and low light, which is caused by its specific lateral arrangement within the membrane and might be essential for its regulatory role. In functional terms low light decreases the photochemical activity of thylakoids due to partial photosystem II centers inactivation and impaired electron transport towards photosystem I without inhibiting the photosystems’ functionality, which suggests that the established structural changes play a part in the photosynthetic apparatus operation.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

41

Numer

12

Opis fizyczny

Article 188 [8p.], fig.,ref.

Twórcy

autor
  • Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, G. Bonchev Str., Bl.21, 1113 Sofia, Bulgaria
autor
  • Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, G. Bonchev Str., Bl.21, 1113 Sofia, Bulgaria
autor
  • Department of Biophysics and Radiobiology, Faculty of Biology, Sofia University “St. Kliment Ohridski”, 8 Dragan Tsankov Blvd., 1164 Sofia, Bulgaria
autor
  • Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, G. Bonchev Str., Bl.21, 1113 Sofia, Bulgaria
autor
  • Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, G. Bonchev Str., Bl.21, 1113 Sofia, Bulgaria
autor
  • Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, G. Bonchev Str., Bl.21, 1113 Sofia, Bulgaria

Bibliografia

  • Albanese P, Manfredi M, Meneghesso A, Marengo E, Saracco G, Barber J, Morosinotto T, Pagliano C (2016) Dynamic reorganization of photosystem II supercomplexes in response to variations in light intensities. Biochim Biophys Acta Bioenerg 1857:1651–1660. https://doi.org/10.1016/j.bbabio.2016.06.011
  • Anderson JM, Chow WS, Goodchild DJ (1988) Thylakoid membrane organisation in sun/shade acclimation. Funct Plant Biol 15:11–26. https://doi.org/10.1071/PP9880011
  • Apostolova EA, Dobrikova AG, Ivanova PI, Petkanchin IB, Taneva SG (2006) Relationship between the organization of the PSII supercomplex and the functions of the photosynthetic apparatus. J Photochem Photobiol B 83:114–122. https://doi.org/10.1016/j.jphotobiol.2005.12.012
  • Arnon D (1949) Copper enzymes in isolated chloroplasts. Polyphenoloxidase in Beta vulgaris. Plant Physiol 24:1–15. https://doi.org/10.1104/pp.24.1.1
  • Bailey S, Walters RG, Jansson S, Horton P (2001) Acclimation of Arabidopsis thaliana to the light environment: the existence of separate low light and high light responses. Planta 213:794–801. https://doi.org/10.1007/s004250100556
  • Ballottari M, Dall’Osto L, Morosinotto T, Bassi R (2007) Contrasting behavior of higher plant photosystem I and II antenna systems during acclimation. J Biol Chem 282:8947–8958. https://doi.org/10.1074/jbc.M606417200
  • Brooks A, Portis AR, Sharkey TD (1988) Effects of irradiance and methyl viologen treatment on ATP, ADP, and activation of ribulose bisphosphate carboxylase in spinach leaves. Plant Physiol 88:850–853
  • Chow WS, Thorne SW, Duniec JT, Sculley MJ, Boardman NK (1980) The stacking of chloroplast thylakoids: effects of cation screening and binding, studied by the digitonin method. Arch Biochem Biophys 201:347–355. https://doi.org/10.1016/0003-9861(80)90520-2
  • Chow WS, Hope AB, Anderson JM (1991) Further studies on quantifying photosystem II in vivo by flash-induced oxygen yield from leaf discs. Funct Plant Biol 18:397–410
  • Dankov K, Dobrikova A, Bogos B, Gombos Z, Apostolova E (2009) The role of anionic lipids in LHCII organization and in photoinhibition of photosynthetic apparatus. Compt Rend Acad Bulg Sci 62(8):941–948
  • Dankov KG, Dobrikova AG, Ughy B, Bogos B, Gombos Z, Apostolova EL (2011) LHCII organization and thylakoid lipids affect the sensitivity of the photosynthetic apparatus to high-light treatment. Plant Physiol Biochem 49:629–635. https://doi.org/10.1016/j.plaphy.2011.02.019
  • Dobrikova AG, Várkonyi Z, Krumova SB, Kovács L, Kostov GK, Todinova SJ, Busheva MC, Taneva SG, Garab G (2003) Structural rearrangements in chloroplast thylakoid membranes revealed by differential scanning calorimetry and circular dichroism spectroscopy. Thermo-optic effect. Biochemistry 42:11272–11280. https://doi.org/10.1021/bi034899j
  • Garab G, van Amerongen H (2009) Linear dichroism and circular dichroism in photosynthesis research. Photosynth Res 101:135–146. https://doi.org/10.1007/s11120-009-9424-4
  • Garab G, Wells S, Finzi L, Bustamante C (1988) Helically organized macroaggregates of pigment-protein complexes in chloroplasts: evidence from circular intensity differential scattering. Biochemistry 27:5839–5843
  • Goltsev VN, Kalaji HM, Paunov M, Bąba W, Horaczek T, Mojski J, Kociel H, Allakhverdiev SI (2016) Variable chlorophyll fluorescence and its use for assessing physiological condition of plant photosynthetic apparatus. Russ J Plant Physiol 63:869–893. https://doi.org/10.1134/S1021443716050058
  • Horton P (2012) Optimization of light harvesting and photoprotection: molecular mechanisms and physiological consequences. Philos Trans R Soc B 367:3455–3465. https://doi.org/10.1098/rstb.2012.0069
  • Ivanova PI, Dobrikova AG, Taneva SG, Apostolova EL (2008) Sensitivity of the photosynthetic apparatus to UV-A radiation: role of light-harvesting complex II–photosystem II supercomplex organization. Radiat Environ Biophys 47:169–177. https://doi.org/10.1007/s00411-007-0139-7
  • Janik E, Bednarska J, Sowinski K, Luchowski R, Zubik M, Grudzinski W, Gruszecki WI (2017) Light-induced formation of dimeric LHCII. Photosynth Res 132:265–276. https://doi.org/10.1007/s11120-017-0387-6
  • Johnson MP, Goral TK, Ruban AV (2011) Photoprotective energy dissipation involves the reorganization of photosystem II light-harvesting complexes in the grana membranes of spinach chloroplasts. Plant Cell 23:1468–1479. https://doi.org/10.1105/tpc.110.081646
  • Kirchhoff H, Haase W, Wegner S, Danielsson R, Ackermann R, Albertsson PA (2007) Low-light-induced formation of semicrystalline photosystem II arrays in higher plant chloroplasts. Biochemistry 46:11169–11176. https://doi.org/10.1021/bi700748y
  • Kouřil R, Wientjes E, Bultema JB, Croce R, Boekema EJ (2013) High-light vs. low-light: effect of light acclimation on photosystem II composition and organization in Arabidopsis thaliana. Biochim Biophys Acta Bioenerg 1827:411–419. https://doi.org/10.1016/j.bbabio.2012.12.003
  • Leong TY, Anderson JM (1984) Adaptation of the thylakoid membranes of pea chloroplasts to light intensities. I. Study on the distribution of chlorophyll-protein complexes. Photosynth Res 5:105–115. https://doi.org/10.1007/BF00028524
  • Lichtenthaler HK, Kuhn G, Prenzel U, Buschmann C, Meier D (1982a) Adaptation of chloroplast-ultrastructure and of chlorophyll-protein levels to high-light and low-light growth conditions. Z Naturforsch C 37:464–475. https://doi.org/10.1515/znc-1982-5-619
  • Lichtenthaler HK, Kuhn G, Prenzel U, Meier D (1982b) Chlorophyll-protein levels and degree of thylakoid stacking in radish chloroplasts from high-light, low-light and bentazon-treated plants. Physiol Plant 56:183–188. https://doi.org/10.1111/j.1399-3054.1982.tb00322.x
  • Melis A, Harvey GW (1981) Regulation of photosystem stoichiometry, chlorophyll a and chlorophyll b content and relation to chloroplast ultrastructure. Biochim Biophys Acta Bioenerg 637:138–145. https://doi.org/10.1016/0005-2728(81)90219-X
  • Minagawa J (2011) State transitions—the molecular remodeling of photosynthetic supercomplexes that controls energy flow in the chloroplast. Biochim Biophys Acta Bioenerg 1807:897–905. https://doi.org/10.1016/j.bbabio.2010.11.005
  • Murchie EH, Horton P (1997) Acclimation of photosynthesis to irradiance and spectral quality in British plant species: chlorophyll content, photosynthetic capacity and habitat preference. Plant Cell Environ 20:438–448. https://doi.org/10.1046/j.1365-3040.1997.d01-95.x
  • Oguchi R, Hikosaka K, Hirose T (2003) Does the photosynthetic light-acclimation need change in leaf anatomy? Plant Cell Environ 26:505–512. https://doi.org/10.1046/j.1365-3040.2003.00981.x
  • Park IIY, Chow WS, Anderson JM (1997) Antenna size dependency of photoinactivation of photosystem II in light-acclimated pea leaves. Plant Physiol 115:151–157. https://doi.org/10.1104/pp.115.1.151
  • Petrova N, Todinova S, Paunov M, Kovács L, Taneva S, Krumova S (2018) Thylakoid membrane unstacking increases LHCII thermal stability and lipid phase fluidity. J Bioenerg Biomembr 50:425–435. https://doi.org/10.1007/s10863-018-9783-7
  • Ruban AV (2016) Nonphotochemical chlorophyll fluorescence quenching: mechanism and effectiveness in protecting plants from photodamage. Plant Physiol 170:1903–1916. https://doi.org/10.1104/pp.15.01935
  • Sims DA, Pearcy RW (1992) Response of leaf anatomy and photosynthetic capacity in Alocasia macrorrhiza (Araceae) to a transfer from low to high light. Am J Bot 79:449–455. https://doi.org/10.2307/2445158
  • Strasser RJ, Tsimilli-Michael M, Srivastava A (2004) Analysis of the chlorophyll a fluorescence transient. In: Papageorgiou GC, Govindjee (eds) Chlorophyll a fluorescence, vol 19. Advances in photosynthesis and respiration. Springer, Dordrecht, pp 321–362
  • Tóth TN, Rai N, Solymosi K, Zsiros O, Schröder WP, Garab G, van Amerongen H, Horton P, Kovács L (2016) Fingerprinting the macro-organisation of pigment–protein complexes in plant thylakoid membranes in vivo by circular-dichroism spectroscopy. Biochim Biophys Acta Bioenerg 1857:1479–1489. https://doi.org/10.1016/j.bbabio.2016.04.287

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-5f1408bc-7bbc-4eb7-a55d-1a65e2610b75
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.