PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2017 | 26 | 6 |

Tytuł artykułu

Spatiotemporal characteristics and influencing factors of China’s construction industry carbon intensity

Autorzy

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Climate change continuously threatens sustainable development. As the largest energy consumer and carbon emitter in the world, China is facing increasing pressure to cut carbon emissions. Based on Moran’s index I and geographically weighted regression, this paper investigates the spatiotemporal characteristics and the dominating factors of China’s province-level carbon intensity in the construction industry from 2005 to 2014, which is aimed at providing a scientific basis for government while implementing a regional-oriented carbon emissions reduction strategy. The empirical results are shown as follows. Firstly, carbon intensity in the construction industry of each province has been decreasing in the past 10 years. Secondly, provincial carbon intensity in this sector shows significant positive spatial autocorrelation characteristics and the degree of spatial clustering of carbon intensity tended to weaken in this period. Third, according to the analysis of the geographically weighted regression (GWR) model, carbon intensity is positively affected by energy intensity while the labor input and production efficiency both have negative effect. Particularly the regression coefficient of labor input is almost twice as large as the other two factors. The results reveal that there is a significant spatial disparity of these three factors in different provinces.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

26

Numer

6

Opis fizyczny

p.2507-2521,fig.,ref.

Twórcy

autor
  • School of Economics and Management, Chang’an University, Middle Section of South Second Ring Road, Xi’an 710064, China
autor
  • School of Civil Engineering, Chang’an University, 161 Middle Chang’an Road, Xi’an 710061, China
autor
  • School of Civil Engineering, Chang’an University, 161 Middle Chang’an Road, Xi’an 710061, China
autor
  • School of Economics and Management, Chang’an University, Middle Section of South Second Ring Road, Xi’an 710064, China

Bibliografia

  • 1. Hu X., Liu C. Carbon productivity: a case study in the Australian construction industry. Journal of Cleaner Production. 112, 2354, 2016. http://www.sciencedirect.com/science/article/pii/S0959652615014262
  • 2. Wang S.S., Zhou D.Q., Zhou P., Wang Q.W. CO₂ emissions, energy consumption and economic growth in China: A panel data analysis. Energy Policy. 39 (9), 4870, 2011. http://www.sciencedirect.com/science/article/pii/S0301421511004885
  • 3. Zhang Y., Peng Y., Ma C., Shen B. Can environmental innovation facilitate carbon emissions reduction? Evidence from China. Energy Policy. 100, 18, 2017. http://www.sciencedirect.com/science/article/pii/S0301421516305481
  • 4. Yong G. Eco-indicators: Improve China’s sustainability targets. Nature. 477 (7363), 162, 2011. http://www.nature.com/nature/journal/v477/n7363/full/477162b.html
  • 5. Avetisyan H.G., Miller-hooks E., Melanta S. Decision models to support greenhouse gas emissions reduction from transportation construction projects. Journal of Construction Engineering & Management. 138 (5), 631, 2011. https://www.researchgate.net/publication/275183039_Decision_Models_to_Support_G r e e n h o u s e _ G a s _ E m i s s i o n s _ R e d u c t i o n _ f r o m _Transportation_Construction_Projects
  • 6. Truitt P. Potential for reducing greenhouse gas emissions in construction sector, US Environmental Protection Agency, 2009. http://refhub.elsevier.com/S0360-1323(15)30119-0/sref12
  • 7. Amano K., Ebihara M. Eco-intensity analysis as sustainability indicators related to energy and material flow. Management of Environmental Quality An International Journal. 16 (2), 160, 2005. https://www.researchgate.net/publication/228841568_Eco-intensity_analysis_as_sustainability_indicators_related_to_energy_and_material_flow
  • 8. Lai X., Liu J., Georgiev G. Low carbon technology integration innovation assessment index review based on rough set theory - an evidence from construction industry in China. Journal of Cleaner Production. 126, 88, 2016. http://www.sciencedirect.com/science/article/pii/S0959652616301020
  • 9. Chuai X., Huang X., Wang W., Wen J., Chen Q., Peng J. Spatial econometric analysis of carbon emissions from energy consumption in China. Journal of Geographical Sciences. 22 (4), 630, 2012. https://link.springer.com/article/10.1007/s11442-012-0952-z
  • 10. Long R., Shao T., Chen H. Spatial econometric analysis of China’s province-level industrial carbon productivity and its influencing factors. Applied Energy. 166, 210, 2016. http://www.sciencedirect.com/science/article/pii/S030626191501226X
  • 11. Li H., Mu H., Zhang M., Li N. Analysis on influence factors of China’s CO₂ emissions based on Path-STIRPAT model. Energy Policy. 39 (11), 6906, 2011. http://www.sciencedirect.com/science/article/pii/S0301421511006537
  • 12. Xu S., He Z., Long R. Factors that influence carbon emissions due to energy consumption in China: Decomposition analysis using LMDI. Applied Energy. 127, 182, 2014. http://www.sciencedirect.com/science/article/pii/S0306261914003833
  • 13. Zhang Y., Da Y. The decomposition of energy-related carbon emission and its decoupling with economic growth in China. Renewable and Sustainable Energy Reviews. 41, 1255, 2015. http://www.sciencedirect.com/science/article/pii/S1364032114007941
  • 14. Lu Z., Yang Y., Wang J. Factor Decomposition of Carbon Productivity Chang in China’s Main Industries: Based on the Laspeyres Decomposition Method. Energy Procedia. 61, 1893, 2014. http://www.sciencedirect.com/science/article/pii/S1876610214032652
  • 15. Shao C., Guan Y., Wan Z., Guo C., Chu C., Ju M. Performance and decomposition analyses of carbon emissions from industrial energy consumption in Tianjin, China. Journal of Cleaner Production. 64, 590, 2014. http://www.sciencedirect.com/science/article/pii/S0959652613005398
  • 16. Geng Y., Zhao H., Liu Z., Xue B., Fujita T., Xi F. Exploring driving factors of energy-related CO₂ emissions in Chinese provinces: A case of Liaoning. Energy Policy. 60, 820, 2013. http://www.sciencedirect.com/science/article/pii/S030142151300390X
  • 17. Lu S., Lu C., Tseng K., Chen F., Chen C. Energy-saving potential of the industrial sector of Taiwan. Renewable and Sustainable Energy Reviews. 21, 674, 2013. http://www.sciencedirect.com/science/article/pii/S136403211300052X
  • 18. Wang P., Wu W., Zhu B., Wei Y. Examining the impact factors of energy-related CO₂ emissions using the STIRPAT model in Guangdong Province, China. Applied Energy. 106, 65, 2013. http://www.sciencedirect.com/science/article/pii/S0306261913000457
  • 19. Lu Y., Cui P., Li D. Carbon emissions and policies in China’s building and construction industry: Evidence from 1994 to 2012. Building and Environment. 95, 94, 2016. http://www.sciencedirect.com/science/article/pii/S0360132315301190
  • 20. Feng B., Wang X. Research on carbon decoupling effect and influence factors of provincial construction industry in China. China Population, Resources and Environment. 4 (25), 28, 2015. http://en.cnki.com.cn/Article_en/CJFDTotal-ZGRZ201504004.htm
  • 21. Xu B., Lin B. Reducing carbon dioxide emissions in China’s manufacturing industry: a dynamic vector autoregression approach. Journal of Cleaner Production. 131, 594, 2016. http://www.sciencedirect.com/science/article/pii/S0959652616304176
  • 22. Shao S., Liu J., Geng Y., Miao Z., Yang Y. Unco-vering driving factors of carbon emissions from China’s mining sector. Applied Energy. 166, 220, 2016. http://www.sciencedirect.com/science/article/pii/S0306261916300277
  • 23. Yan Q., Zhang Q., Zou X. Decomposition analysis of carbon dioxide emissions in China’s regional thermal electricity generation, 2000-2020. Energy. 112, 788, 2016. http://www.sciencedirect.com/science/article/pii/S0360544216309100
  • 24. Anselin L. Spatial Econometrics: Methods and Models, Dordrecht: Kluwer Academic Publishers, 17, 1998. https://link.springer.com/book/10.1007/978-94-015-7799-1
  • 25. Lesage J.P., Pace R.K. Introduction to Spatial Econometric, Boca Raton: CRC Press, 2009. https://www.researchgate.net/publication/267676434_Introduction_to_Spatial_Econometrics_CRC_Press_Boca_Raton_FL
  • 26. Burnett J.W., Bergstrom J.C., Dorfman J.H. A spatial panel data approach to estimating U.S. state-level energy emissions. Energy Economics. 40, 396, 2013. http://www.sciencedirect.com/science/article/pii/S0140988313001667
  • 27. Yang Y., Cai W., Wang C. Industrial CO₂ intensity, indigenous innovation and R&D spillovers in China’s provinces. Applied Energy. 131, 117, 2014. http://www.sciencedirect.com/science/article/pii/S0306261914006151
  • 28. Zhao X., Burnett J.W., Fletcher J.J. Spatial analysis of China province-level CO₂ emission intensity. Renewable and Sustainable Energy Reviews. 33, 1, 2014. http://www.sciencedirect.com/science/article/pii/S1364032114000793
  • 29. Cheng Y., Wang Z., Ye X., Wei Y.D. Spatiotemporal dynamics of carbon intensity from energy consumption in China. Journal of Geographical Sciences. 24 (4), 631, 2014. https://link.springer.com/article/10.1007/s11442-014-1110-6
  • 30. Zhang Z., Liu R. Carbon emissions in the construction sector based on input-output analyses. Journal of Tsinghua University (Science and Technology). 53 (1), 53, 2013. http://www.cnki.com.cn/Article/CJFDTOTALQHXB201301010.htm
  • 31. Anselin L. Local Indicators of Spatial Association-LISA. Geographical Analysis. 27 (2), 93, 1995. http://onlinelibrary.wiley.com/doi/10.1111/j.1538-4632.1995.tb00338.x/full
  • 32. Lalor G., Zhang C.S. Multivariate outlier detection and remediation in geochemical databases. Science of The Total Environment. 281, 99, 2001. http://www.sciencedirect.com/science/article/pii/S0048969701008397
  • 33. Anselin L., Griffith D.A. Do spatial effects really matter in regression analysis? Papers in Regional Science. 65, 11, 1988. https://www.researchgate.net/publication/227681433_Do_spatial_effects_really_matter_in_regression_analysis?ev=auth_pub
  • 34. Legendre P. Spatial autocorrelation: trouble or new paradigm? Ecology. 74 (6), 1659, 1993. https://www.researchgate.net/publication/216812577_Spatial_Autocorrelation_Trouble_or_New_Paradigm
  • 35. Huang J., Huang Y., Pontius R.G., Zhang Z. Geographically weighted regression to measure spatial variations in correlations between water pollution versus land use in a coastal watershed. Ocean & Coastal Management. 103, 14, 2015. http://www.sciencedirect.com/science/article/pii/S0964569114003317
  • 36. Sheng J., Han X., Zhou H. Spatially varying patterns of afforestation/reforestation and socio-economic factors in China: a geographically weighted regression approach. Journal of Cleaner Production. 153, 362, 2017. http://www.sciencedirect.com/science/article/pii/S0959652616307326
  • 37. Fotheringham A.S., Charlton M., Brunsdon C. The geography of parameter space: an investigation of spatial non-stationarity. International Journal of Geographical Information Systems. 10 (5), 605, 1996. http://www.tandfonline.com/doi/abs/10.1080/02693799608902100
  • 38. Bowman A.W. An Alternative Method of Cross-validation for the Smoothing of Density Estimates. Biometrika. 71 (2), 353, 1984. https://www.researchgate.net/publication/224817256_An_Alternative_Method_of_Cross-Validation_for_the_Smoothing_of_Density_Estimate
  • 39. Santos R., Costa A.A., Grilo A. Bibliometric analysis and review of Building Information Modelling literature published between 2005 and 2015. Automation in Construction. 80, 118, 2017. http://www.sciencedirect.com/science/article/pii/S0926580517302297
  • 40. Wong J.K.W., Li H., Wang H., Huang T., Luo E., Li V. Toward low-carbon construction processes: the visualisation of predicted emission via virtual prototyping technology. Automation in Construction. 33, 72, 2013. http://www.sciencedirect.com/science/article/pii/S092658051200163X
  • 41. Barati K., Shen X. Operational level emissions modelling of on-road construction equipment through field data analysis. Automation in Construction. 72, 338, 2016. http://www.sciencedirect.com/science/article/pii/S0926580516301649
  • 42. Azzi M., Duc H., Ha Q.P. Toward sustainable energy usage in the power generation and construction sectors - a case study of Australia. Automation in Construction. 59, 122, 2015. http://www.sciencedirect.com/science/article/pii/S0926580515001661
  • 43. Wong J.K.W., Zhou J. Enhancing environmental sustainability over building life cycles through green BIM: A review. Automation in Construction. 57, 156, 2015. http://www.sciencedirect.com/science/article/pii/S0926580515001211
  • 44. Yepes V., Martí J.V., García-Segura T. Cost and CO₂ emission optimization of precast – prestressed concrete U-beam road bridges by a hybrid glowworm swarm algorithm. Automation in Construction. 49, 123, 2015. http://www.sciencedirect.com/science/article/pii/S0926580514002246

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-5efccbeb-d2cf-45de-ac86-a3edb251b5c9
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.